

Course No.-DTC-111, Credit Hours – 2 (1+1)

AMINO ACIDS

BINITA RANI ASSOCIATE PROFESSOR (DAIRY CHEMISTRY) FACULTY OF DAIRY TECHNOLOGY S.G.I.D.T., BVC CAMPUS, P.O.- BVC, DIST.-PATNA-800014

Introduction

- > Amino acid both amino and carboxyl functional groups.
- > H2NCHRCOOH Alpha-amino acids general formula
- $\triangleright \alpha$ -carbon to which the amino and carboxylate groups are attached to
- > Amino acids => **building blocks** of proteins => classified into
 - **essential** and
 - > non-essential
 - > Twenty amino acids are found => eight are essential.
- > Situations in which adequate consumption of amino acids becomes essential
 - > during early development and maturation
 - > pregnancy, lactation, or
 - injury (a burn, for instance).
- Complete protein source all the essential amino acids and incomplete protein source lacks one or more.

Optical Property

- ➤ Protein Twenty types of amino acids
- > one- or three-letter abbreviations for each amino acid used => amino acid representation in peptides.
- All amino acids have asymmetric carbon so they are optically active, except glycine
- > Amino acids can be
 - dextrorotatory or
 - > levorotatory
 - depending upon the rotation of plane polarized light
- **L-amino acids** representative of **majority** of amino acids found in proteins.
- > D-amino acids produced by exotic sea-dwelling organisms
- ➤ The L and D convention for amino acid configuration refers to optical activity of the glyceraldehyde isomer from which the amino acid is synthesized rather than the optical property of the acid itself (L-glyceraldehyde is levorotary; D-glyceraldehyde is dextrorotary)

L-Form Amino Acid Structure Optical property

Non - Superimposable mirror image

General structure of amino acid

Non superimposable Mirror images of Amino Acids

Zwitterions

- At the isoelectric point, protonated ammonium groups and deprotonated carboxylate groups are equal, resulting in a net neutral charge and formation of Zwitterions
- > Zwitterion can behave as both a base as well as an acid.
- For glycine, the isoelectric point is arithmetic mean of the two pKa values, because of absence of an ionizable group in its side chain.
- \triangleright Glycine has a net negative charge at pH > pI. => move towards the anode
- > At pH < pI, glycine has a net positive charge => move toward the cathode

Classification of Amino acids

As acidic, basic, aliphatic, aromatic, or sulfur-containing based on the R groups properties.

Classification of Amino Acids by Polarity

Polar or non-polar, it is the bases of the amino acid properties

Amino acids with aliphatic side chains

Aliphatic Side Chains

Amino acids side chains with sulfur atoms

Side Chains with Sulfur Atoms

Amino acids side chains with hydroxylic (OH) groups

Side Chains with Hydroxylic (OH) Groups

Amino acids with aromatic rings

Side Chains with Aromatic Rings

Phenylalanine (Phe,F)

Tyrosine (Tyr, Y)

Proline (Pro,P)

Amino acid side chain with basic group

Side chain with Basic group

Amino acids side chains with acidic groups or their amides

Side Chains with Acidic Groups or their Amides

