CHEMOTHERAPY: Introduction

Presented by-Dr.Rashmi Rekha Kumari

Asst. Professor, Dept. of Veterinary pharmacology

Bihar veterinary College, BASU, Patna

Dated: 17.4.2020

Digitally signed by Dr RASHMI R KUMARI
DN: CN = Dr RASHMI R KUMARI, C = IN, O = Bihar Animal Science University, Patna, OU = Bihar Veterinary College Reason: I am approving this document Date: 2020.04.19 12:50:00 +05'30'

Chemotherapy

- ➤ It may be defined as the treatment of systemic infection (caused by bacteria, viruses, fungi, protozoa, helminths etc.) or malignancy with specific chemicals that have selective toxicity for infecting organism /malignant cell with no or minimal effect on the host cell.
- ► <u>Drug: Pharmacotherapeutic Agent + Chemotherapeutic Agent</u>

- The Chemotherapeutic agents have minimal or negligible effect on the host
- The basis of selective toxicity is variation in structural component and or metabolic processes between the host cell and pathogen.
- Most of the antibiotics exhibits a great degree of selectivity such as:-
- a. Inhibition of bacterial cell wall formation (penicillin's/cephalosporins)
- b. Inhibition of bacterial protein synthesis(tetracycline, aminoglycosides etc.)
- c. Bacteriostatic effect of sulphonamides is due to PABA antagonism in folic acid synthesis

Antibiotics

- Antibiotics constitute a large portion of chemotherapeutic agent
- Antibiotics are substances produced by microorganism(fungi, Actinomycetes or bacteria), which selectively suppress the growth or kill other microorganism at very low concentration.
- Antimicrobial Agent: Are term used to designate synthetic as well as naturally obtained drug that attenuate microorganism

HISTORY

- ➤ The work of Ehrlich prompted search for newer chemicals as antibacterial and he was rewarded with Nobel prize in the year 1909.
- Father of chemotherapy:- Paul Eehrlich.
- > German Gerhard Domagk discovered antibacterial activity of another dye prontosil.
- ➤ Domagk was also honoured with the Nobel prize in medicine (1938).
- ➤ Pasteur and Joubert ,who showed bacterial property of common bacteria against anthrax bacilli, first demonstrated the phenomenon of antibiosis b/w microorganisms. Penicillin was discovered in (1941). treating with human bacterial infection.

- ➤ Alexander Fleming in (1928) working at penicillium notatum prevented the bacteria.it was established as an antibiotic by Florey and chain his associates in treating wounded soldiers during world war II.
- > Fleming Florey and Chain were awarded Nobel prize in (1945).
- > Streptomycin was isolated from Streptomyces griseus by Waksman in (1945).
- >Antibiotics were discovered viz:-
- ➤ Chloramphenicol- 1947
- ➤ Amphotericin B- 1956
- ➤ Cephalosporins 1960
- ➤ Gentamycin- 1964
- > Fluroquinolones- 1980

Dr RASHMI R KUMARI

Digitally signed by Dr RASHMI R KUMARI DN: CN = Dr RASHMI R KUMARI, C = IN, O = Bihar Animal Science University, Patna, OU = Bihar Veterinary College Date: 2020.04.19 12:51:46 +05'30'

Antimicrobial Agents

- > These are synthetic as well as naturally obtained (microbial origin) drug that are used to inhibit or kill micro-organisms.
- > Classification of AMAs
- a) Based on antibacterial action:-

Bacteriostatic: - Suppression of bacterial growth and multiplication.

Eg.- Sulphonamides, tetracyclines, erythromycin, chloramphenicol.

Bactericidal:- Cause death of bacteria.

Eg.- Penicillin, cephalosporins, streptomycin, kanamycin, colistin,

bacitracin etc

b) Based on Antibacterial spectrum:-

Narrow Spectrum: - Effective against a limited group of bacteria.

- i) Gram positive :- Penicillin G, erythromycin, lincomycin, bacitracin etc.
- ii) Gram negative:- Streptomycin, gentamycin, polymyxinB etc.

Broad spectrum: Effective against both Gram positive & Gram negative bacteria E.g.: Tetracyclines, chloramphenicol, fluoroquinolones, Sulfonamide Note: Drugs with all range of intermediate band width are now available

Based on Mechanism of antimicrobial action

- I. By inhibiting bacterial cell wall formation or causing its break down leading to death of the microbes.
 - E.g.:- (Penicillins, cephalosporins, bacitracin, vancomycin).
- ii). By altering microbial cell membrane permeability causing leakage of essential intracellular components:-
- E.g.:-Polyene antifungal antibiotics (nystatin & amphotericin B) exert antifungal action by binding to ergo sterol of fungal cell membrane, acting as ionophores causes leakage of cations (K) from the fungal cell.
- iii). By inhibiting synthesis of ergo sterol in cell membrane of fungi:antifungal drug itraconazole.
- iv). By disrupting the structural integrity of bacterial cell membrane: The cationic detergent antibiotics polymixin B,& colistin interact with bacterial cell membrane and disrupt its structure causing bactericidal effect.

- v) By interfering with protein synthesis in bacteria e.g., Tetracyclines, chloramphenicol, Erythromycin, clindamycin, linezolide vi) By causing misreading of mRNA code and affect permeability
 - e.g.:- Aminoglycosides.

- vii) By interfering with nucleic acid synthesis by the following mechanism:-
- a.) By inhibiting nucleic acid synthesis (DNA & RNA):-
- Sulphonamides and sulfones, pyrimethamine Acyclovir, Zudovudine
- b.) By altering base pairing properties of the template: Proflavine and acriflavine cause frame shift mutation altering the codons for synthesis of a new protein instead of the normal protein in bacteria.
- c.) Inhibition of either DNA or RNA polymerase in bacteria:-Rifamycin and rifampicin (antiTB antibiotics) inhibit bacterial RNA polymerase. Ciprofloxacin and Norfloxacin inhibit DNA gyrase

Based on sources

- **a. Fungal Origin:-** penicillin ,Cephalosporin and Griseofulvin.
- **b. Bacterial Origin:** Bacitracin, Polymyxin B,Colistin,tyrothricin.
- c. Actinomycetes Origin: Streptomycin, tetracyclines, chloramphenicol, Macrolides

Dr RASHMI R KUMARI Digitally signed by Dr RASHMI R KUMARI DN: CN = Dr RASHMI R KUMARI, C = IN, O = Bihar Animal Science University, Patna, OU = Bihar Veterinary College Date: 2020.04.19 12:51:18 +05'30'

Principle of chemotherapy

- a. The basic principle of chemotherapy is the selective toxicity i,e the drug should selectively inhibit or kill the disease causing pathogenic organism.
- b. Chemotherapy must be rational and needs to be supported by either a clinical or microbiological diagnosis to identify the pathogenic organisms.
- c. Characterization of the pathogens including its sensitivity to an AMAs is essential.

- a. Selection of an appropriate drug based on pathogenic organism, patient factors and drug factors.
- b. The drug should be used in proper time, by proper route, at appropriate dose rate and for a proper duration.
- c. Attainment of effective concentration of a chemotherapeutic agent for a sufficient period at the site of infection (tissue or body fluid) is very important.
- d. Specific and appropriate supportive therapy should be undertaken to overcome the infection.

THANK YOU

R KUMARI

Dr RASHMI R

KUMARI

DN: CN = Dr RASHMI R KUMARI, C = IN, O = BiharAnimal Science University, Patna, OU = Bihar Veterinary College Date: 2020.04.19 12:50:35 +05'30'