

#### **BIOCHEMISTY**

Course No.-DTC-111, Credit Hours – 2 (1+1)



BINITA RANI ASSOCIATE PROFESSOR (DAIRY CHEMISTRY) FACULTY OF DAIRY TECHNOLOGY S.G.I.D.T., BVC CAMPUS, P.O.- BVC, DIST.-PATNA-800014

# LIPIDS



#### Lipids => broad group of naturally occurring molecules => include

- > fats,
- waxes,
- > sterols,
- > fat soluble vitamins,
- > monoacylglycerols,
- > diacylglycerols,
- > phospholipids and
- > others.

- compounds => generally
- > soluble in organic solvents and
- > largely **insoluble** in water.
- main biological functions of lipids :
- > energy storage,
- > structural components of cell membranes,
- > vitamins,
- **hormones** and
- > important signaling molecules.

- > Lipid is sometimes used as a synonym for **fats**.
- > fats are a subgroup of lipids called triacyl glycerols.
- Lipids also encompass molecules, such as -
- Fatty acids and their derivatives (including tri-, di- and monoacylglycerols and phospholipids), as well as other
- > sterol-containing metabolites such as cholesterol.
- Humans use various biosynthetic pathways => both degrade and synthesize lipids
- > some **essential lipids** cannot be made this way => must be obtained from the **diet**.

#### **Lipid Classification** (7 groups):

- > Fatty Acids
- > Acyl glycerols
- > Glycerophospholipids
- > Sphingolipids
- > · Sterols
- > Prenol lipids
- > Saccharo lipids

#### 1. Fatty acids

- > consists of :
- hydrocarbon chain and
- > a terminal carboxylic acid group.
- This arrangement confers the molecule with a polar, hydrophilic end and a nonpolar, hydrophobic end => insoluble in water.
- ➤ fatty acid structure => the most fundamental categories of biological lipids => commonly used as a **building block** => more structurally complex lipids.

- > carbon chain (4 to 24 carbons) => may be saturated or unsaturated.
- > saturated fatty acid => all the carbon atoms => saturated with hydrogen atoms with general formula CH3(CH2)nCOOH where => n is an even number.
- Mono-unsaturated fatty acids => one double bond in their structure.
- > polyunsaturated fatty acids => two or more double bonds.
- ➤ double bonds in polyunsaturated fatty acids are generally separated by at least one methylene group.

- double bond => there is the possibility of => either a
  cis or trans geometric isomerism => significantly affects
  => molecule's molecular configuration.
- Cis-double bonds => cause the fatty acid chain to bend => an effect that is more pronounced when more double bonds are there in a chain.
- > plays important role => structure and function of **cell** membranes.

- Naturally occurring fatty acids => cis configuration, although trans form => natural and partially hydrogenated fats and oils.
- > Shorter the chain => lower is the melting temperature
- ➤ Unsaturated fatty acids => lower melting temperatures than saturated fatty acids of same chain length.

#### 2. Glycerolipids

- > Glycerolipids are composed mainly of
- > mono-, di- and tri-substituted glycerols, the most well-known => triacylglycerols /triglycerides / fats.
- In these compounds => all three hydroxyl groups of glycerol => esterified => different fatty acids (Mixed Lipids).



- > They function => food store.
- > these lipids comprise => bulk of storage fat in animal tissue and oil seeds.

TG or fats may be => solid or liquid at room temperature => their structure and composition.

- > "Oils" => used to refer to fats => liquids at normal room temperature.
- "fats" => used to refer to fats => solids at normal room temperature.
- > "Lipids" => used to refer to => both liquid and solid fats, along with other related substances.

#### 3. Glycerophospholipids

- > phospholipids :
- > key components of the lipid bilayer of cells
- involved in **metabolism** and
- > cell signaling.
- Neural tissue (including brain) contains relatively high amounts
  => glycerophospholipids and
- alterations in their composition has been implicated in => various neurological disorders.

- > PL found in biological membranes :
- > Phosphatidyl choline (PC or lecithin)
- > phosphatidyl ethanolamine (PE) and
- > Phosphatidyl serine (PS).
- ➤ Plasmalogens => a type of glycerolipids contain => fatty alcohol at C-1 of Sn glycerol with double bond instead of a fatty acid.



Glycerophospholipids have three components: fatty acid lipid groups (orange), glycerol (white), and phosphate ester (green)

#### L-Glycerol 3--phosphate

Amphiphilic

| Name of glycoroglospholipid                 | Name of X                              | Ferman la vil'N                                     | Pet champs<br>(as p40 f) |
|---------------------------------------------|----------------------------------------|-----------------------------------------------------|--------------------------|
| Phospharidic acid                           | _                                      | — E                                                 | -1                       |
| Phosphartidylethus elamino                  | little an elametro                     | — сп <sub>2</sub> —сп <sub>2</sub> —8п <sub>4</sub> | 0                        |
| Phospha teleleletare                        | Cholms                                 | _ спсп% сп <sub>-2</sub> ,                          | 0                        |
| PhosphatidyLorina                           | Stories                                | en,—en_Au,                                          | -1                       |
| Phosphasidylytysers1                        | Objected                               | OH CH CH                                            | -1                       |
| Planephantidyllimorited<br>4.5-bisphasohate | reportions in the 4,6-<br>stophosphate | THE PART OF                                         | -4                       |
| Cardidipin                                  | Phosphacidyli-<br>gly-sorol            | CHOR O                                              | -6                       |
|                                             |                                        | 314-0-B-10                                          |                          |

## Glycerophospholipids

#### 4. Sphingolipids

- complex family of compounds that share => common structural feature => a sphingoid base backbone (synthesized de novo from the amino acid serine and a long- chain fatty acyl CoA) => then converted into =>
- > ceramides,
- > phosphosphingolipids,
- glycosphingolipids and
- > other compounds.

- > major sphingoid base of mammals is commonly referred to as => sphingosine.
- Ceramides (N-acylsphingoid bases) are a major subclass of sphingoid base derivatives with an amide-linked fatty acid.
- The fatty acids are typically saturated or monounsaturated with chain lengths from 16 to 26 carbon atoms.



#### Sphingolipid

Structure of sphingolipids. In sphingolipids, the hydrophobic region consists of a longchain sphingoid base with generally 18 carbons, such as sphingosine, which is linked to the acyl group of a fatty acid via an amide bond (R2). The hydrophilic region (R1) consists in the simplest case of a hydroxyl group in the case of ceramide.





#### **Sphingolipids**

- > Functions of mammalian sphingolipids
- > Sphingolipids => protect the cell surface against harmful environmental factors by forming a mechanically stable and chemically resistant outer leaflet of the <u>plasma membrane lipid bilayer</u>.
- Certain complex <u>glycosphingolipids</u> => involved in specific functions => <u>cell recognition and signaling</u>.
- Cell recognition depends => on physical properties of sphingolipids
- signaling involves specific interactions of the glycan structures of glycosphingolipids with similar lipids present on neighboring cells or with proteins.

#### 5. Sterols

- > Sterol lipids => cholesterol and its derivatives => important component of membrane lipids, along with the glycerophospholipids and sphingomyelins.
- > Steroids => derived from the same fused four-ring core structure => have different biological roles as hormones and signaling molecules.
- eighteen-carbon(C18) steroids => include the estrogen family
  C19 steroids => comprise the androgens such as testosterone and androsterone.

- > C21 subclass => includes the progestogens as well as glucocorticoids and mineralocorticoids.
- secosteroids => comprising various forms of vitamin
  D => are characterized by cleavage of the B ring of the core structure.
- ➤ Other examples of sterols => bile salt and their conjugates, which in mammals are => oxidized derivatives of cholesterol and are synthesized in the liver.

# cholesterol



Sterols are <u>steroids</u> in which one of the hydrogen atoms is substituted with a <u>hydroxyl group</u> in the carbon chain. They have in common with steroids the same fused four-ring core structure.

## 6. Prenol lipids

- > Prenol (3-methyl-2-buten-1-ol) => **natural alcohol**.
- > one of the simplest terpenes.



- Prenol lipids => synthesized from => 5-carbon precursors isopentenyl diphosphate and dimethylallyl diphosphate => produced mainly via => mevalonic acid (MVA) pathway.
- > simple **isoprenoids** (linear alcohols, diphosphates) are formed by successive addition of C5 units and => are classified according to number of these terpene units.

- > Structures containing > than 40 carbons are known as polyterpenes.
- ➤ Carotenoids are important simple isoprenoids => function as antioxidants and as precursors of vitamin A.
- Another biologically important class of molecules is exemplified by the quinones and hydroquinones => contain an isoprenoid tail attached to a quinonoid core of non-isoprenoid origin.
- ➤ Vitamin E, vitamin K and ubiquinones => examples of this class.

## 7. Saccharolipids

- compounds in which fatty acids are directly linked to sugar backbone => forming structures => compatible with membrane bilayers.
- ➤ In saccharolipids => a monosaccharide substitutes for the glycerobackbone present in glycerolipids and glycerophospholipids.
- most familiar saccharolipids => acylated glucosamine precursors of the Lipid A component of the lipopolysaccharides =>
- Gram-negative bacteria

## **Common Fatty Acids**

| Chemical Names and Descriptions of some Common Fatty Acids |                 |   |                                       |                           |  |
|------------------------------------------------------------|-----------------|---|---------------------------------------|---------------------------|--|
| Common Name                                                | Carbon<br>Atoms |   | Scientific Name                       | Sources                   |  |
| Butyricacid                                                | 4               | 0 | butanoic acid                         | butterfat                 |  |
| Caproid Add                                                | 6               | 0 | hexanoic acid                         | butterfat                 |  |
| Caprylio Acid                                              | 8               | 0 | octanoic acid                         | coconut oil               |  |
| Capric Acid                                                | 1.0             | 0 | decanoic acid                         | coconut oil               |  |
| Lauric Acid                                                | 1.2             | 0 | dodecanoic acid                       | coconut oil               |  |
| Myristic Acid                                              | 14              | 0 | tetrade can oic acid                  | palm kernel oil           |  |
| Palmitic Acid                                              | 1.6             | 0 | hexade can oic acid                   | palm oil                  |  |
| Palmitoleic Acid                                           | 1.6             | 1 | 9-hexadecenoic acid                   | animal fats               |  |
| Stearic <b>Acid</b>                                        | 1 B             | 0 | octadecano ic acid                    | animal fats               |  |
| Oleic Acid                                                 | 1 B             | 1 | 9-octadecencie acid                   | olive oil                 |  |
| Vaccenic Acid                                              | 1.6             | 1 | 11-octadecenoicacid                   | butterfat                 |  |
| Linoleic Acid                                              | 1 B             | 2 | 9,12-octad ecadienoic acid            | grape seed oil            |  |
| Alph a-Linolenic<br>Acid (ALA)                             | 1 B             | 3 | 9,12,15-octadecatrienoic acid         | flaxseed<br>(linseed) oil |  |
| Gamma-Linolenic<br>Acid (GLA)                              | 18              | 3 | 6,9,12-octadecatrienoic acid          | borage oil                |  |
| Arachidic Acid                                             | 2 D             | 0 | eicasanoic acid                       | peanut oil,<br>fish oil   |  |
| Arachidonic Acid<br>(AA)                                   | 20              | 4 | 5,8,11,14-eicosatetraenoidacid        | liver fats                |  |
| ЕРА                                                        | 2 0             | 5 | 5,8,11,14,17-eicosapentaenoid<br>acid | fish oil                  |  |

# THANKS