Ovulation

Dr Bhavna Assistant Professor cum Junior Scientist Deptt. of Veterinary Gynaecology and Obstetrics

Ovulation

- Mammalian ovary can ovulate at any point except at hilus.
- In mare, limited to ovulation fossa.
- In cattle, sheep and mare occurs at random between the two ovaries.

- ☐ Three major changes that a preovulatory follicle undergoes:
- > Cytoplasmic and nuclear maturation of oocyte.
- ➤ Disruption of cumulus cell cohesiveness among cells of granulosa cell layer.
- > Thinning and rupture of external follicular wall.

- After the ovulatory surge of gonadotropins, blood flow increases to all classes of follicles.
- The follicle destined to ovulate, receives the largest volume of blood in absolute terms.

Cellular events during ovulation

- > Before ovulation, all tissue layers are broken down-
 - Surface epithelium
 - Collagen rich tunica albugenia
 - Theca interna
 - Thin basement lumina
 - Membrana granulosa

- Follicular elasticity increases during growth, which is required for corpus luteum organisation.
- Enlarging follicle protrudes out from the ovarian surface, its vascularity increases except at its centre.

Oocyte

- Cumulus cells anchored in zona pellucida remain, form corona radiata.
- Cumulus cell dissociation frees oocyte from granulosa layer and meiosis resumes 3 hrs after Gonadotropin surge.
- Cumulus cells secrete glycoproteins, which form viscous mass enclosing oocyte and corona.
- As follicle ruptures, viscous mass spreads over ovarian surface to facilitate "pick up".

Granulosa Cells

- Granulosa layer completely dissociates only at follicular apex, finally disappears.
- About 2 hrs before ovulation, granulosa cell growth processes penetrate through basal lamina, preparing invasion of theca cells and blood vessels into granulosa.
- Associated with production of Early Pregnancy Factor.

Theca cells

- In a few hours before ovulation, follicular volume increases causing elasticity of the follicle.
- Invasive oedema of theca cells and collagen fiber dissociation causes looser cohesion of the theca externa.

Apex changes

- Rupture involves interaction of ovarian epithelium and underlying follicular wall.
- Wall of the follicle apex becomes exceedingly thin in an are called <u>stigma.</u>
- Stigma thins out, bulges on ovarian surface and becomes avascular.

Mechanisms of Ovulation

- Ovulation occurs in response to a combination of physiologic, biochemical and biophysical mechanisms:
- Neuroendocrine/Endocrine mechanisms GnRH, Steroids and PGs
- Neurobiochemical/Pharmacological mechanisms
- Neuromuscular and neurovascular mechanism and enzymatic interactions.

 A gonadotrophin-induced pre ovulatory increase in follicular prostaglandins, produced by granulosa cells is needed for ovulation.

 PGs may stimulate ovarian contractions and activate thecal fibroblasts to proliferate and release proteolytic enzymes.

• Steroids, esp. progesterone, may also be involved.

Biochemical Mechanisms

- Preovulatory gonadotropin surge induces immediate and temporary rise in progesterone and related progestins.
- Later, Estradiol and PGs secretion are augmented.
- P₄ stimulates collagenase activity in follicular wall.
- Inhibition of progesterone synthesis prevents ovulation.
- $PGF_{2\alpha}$ causes follicular rupture and PGE_2 causes remodelling of follicular layers forming CL.

Neuromuscular Mechanisms

- Ovarian stroma and concentric layers of theca externa contain smooth muscle cells innervated by autonomic nerve terminals.
- Ovarian contractions facilitate follicular rupture.
- After rupture, $PGF_{2\alpha}$ stimulates the thecal neuromuscular system causing extrusion of the oocyte.

Neuroendocrine Control

- Preovulatory gonadotropin surge occurs at the start of estrus when P_4 falls to minimal and E_2 reaches highest level.
- E₂ acts on both pituitary and hypothalamus.
- E₂ increases sensitivity of the pituitary gonadotropin-producing cells to the competent hypothalamus hormone GnRH.

Oocyte Maturation

