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FOREWORD 

fisheries Statistics forms a part of the curricula 

of the different courses conducted by the Central Insti­

tute of fisheries Education, Bombay. The students enroll­

ing for these courses are generally graduates in biology/ 

zoology/fisheries with mathematics upto matric level. 

Because of weak mathematical base they find it difficult 

to comprehend the statistics books which ienerally cater 

to a _ixed tariet ,roup. Moreover, the examples and app­

lications contained in these books do not usually fulfil 

the needs of fisheries students. To overcome these lacu­

nae, Prof. R.S.Biradar, Scientist of this Institute has 

written a manual on 'fisheries Statistics' in simple & 
systematic manner to meet the requirements and expecta­

tions of the students of fishery science. I am sure the 

.anual would also serve as an useful handbook to research 

workers. 





PREFACE 

This aanual on 'Fisheries Statistics' is an outgrowth 

of ay class room lectures delivered to the postgraduate 

students of fisheries sciences at CIFE. Bombay during the 

last five years. 1 lillY add that there is no intention or 

will to ~all this manual a text book. The primary object­

ive of writing this manual is to provide a companion to 

the students of two year postgraduate Diploma in Fisheries 

Science and M.Sc. (Fisheries Management) courses of the 

Institute matching the syllabus relating to statistical 

techniques as applie4 in fisheries. 

In th~ manual. the emphasis is on applications of 

statistical aethods through examples drawn from the field 

of fisheries and as far as possible mathematical deriva­

tions have been avoided. 

In the preparation of this manual many standard texts 

and journals have been consulted. However. in the biblio­

graphy selected references only have been included to en­

able the students to refer to them wherever detailed exp­

lanations are felt necessary. 

It is a pleasure to mention that the idea of prepar­

ing this aanual .as mooted by Dr.S.H.Owivedi, foraer 

Director of CIFE, Boabay, whose guidance and encourageaent 



.ade the .anual possible. It ¥as during his tenure,2 pre­

!i_inary version of the I13nual was brought out. I express 

.Y sincere eratitude to Prof.Y.Sreekrishna, Director,eIFE, 
Bombay for his encouraeement and keen interest in brine­
ing out this manual in a printed form. I a. grateful to 

Dr.S.S.Pillai, Jo~nt Director, IASRI and Or.A.Dey,Seni~r 

Scientist, IASRI, New Delhi and Prof. K.K.Ghosh, Senior 

Scientist of the Institute for their critical scrutiny 8 

suggesting improvements to the manual. I am thankful to 

Dr.M.Oevaraj, Senior Scientist of the Institute for his 

valuable suggestions. I thank my colleague Mrs .R.Tewaii, 

for her untiring efforts in bringing out this .anual in 

the present fora. Mrs.S.S.Gajbhiye and Mr.M.J.Shahakar 

have rendered valuable help in secretarial work and 

Mr.A .Sadanandan and Mr.D.R.Khogare in preparation of gra­

phs, figures and art work for the cover page which 1 sin­
cerely acknowledge. 

While every effort has been .ade to aake the aanual 

useful and error free, any o.issions Or .istake~ that 

'uy have crept into the aanual if pointed out, would be 

welcoae and appreciated . 

".S.IIItAOAJ. 



DEFINITION AND SCOPE Of fiSHERIES STATISTICS 

Deflrition of statbtics .m fisheries Ibtlstics 

The term 'statistics' has different meanings depending upon It. usage 

as 8 plural or a singular noon. When used in the plural context it 

stands for numerical facts and figures. tor instance consider the 
following statements. : 

The marine and inland fish prol:luction in the country during 1979 was 

1.5 and 0.85 miliion tonnes respectively. Kerala topped the marine 

fish production with 3.30 lakh tonnes, while West Bengal topped the 

inland fish production with · 2..32 lakh tonnes. These are 'Statistics' 

relating to fish production in the country. The use of the word statistics 

[0 signify numerical facts and figures is not very exact. The proper 

word to indicate numerical facts and figures is 'data '. 

When the .word statistics is used as a singular noun it stands for the 

'Science of Statistics' or for 'Statistical methods'. 

definitions for the science of statistics. One of 

'Statistics is the science of collection, presentation, 

pretation of numerical facts'. 

There are many 

these definition5 Is 

analysis and inter-

Biometry is the science of statistics as applied to quantitative study 

of the biological phenomena. Fisheries statistics relates to the branctl 

of biometry applied to the study of fish and fisheries as well as to 

the study of socia-economic aspects of fisheries 8S a resource wealth 

utilised by man for avocation and food. It also encompasses fisheries 

data. 

Scope of fiaheries statistics ~ ~e 6\ ~'\-'t....:.. ~ .()o.. ~ 
If\-~~.~ . 

The scope of fisheries statistics can broadly be cl8$SHied in to the 

following areas: 

Irwentary of potential remurcel 

Esti mation of total water area available for exploitation, .rea actually 

exploited, manpower employed In fishing and allied activities, the type 

of craft and gear employed for fishing etc. 
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1.2.2 Procb:tioo 

Estimation of inland and marine fish landings disaggregated according 

to mechanised and non-mechanised crafts, species, sizes etc. It also 

encompasses all forms of biotic productions from lI1uatic resources 

such 8S ss·a weeds, frogs etc • 

• 1.2. J fi~ .. Lock assessment 

Growth of fish populations, their size (length or weiCJht) and age struc­

ture, natality, recruitment and mortality, estimatIon of stock, optimum 

yield etc. 

1.2.. Morphometric and meristic analysis 

Measurement of various body proportions such as total length, standard 

length, fork iength, head length etc., for the purpose of statistical 

comparision with similar measurements for a sub species or a closely 

related species and establishing the levels of significance at which 

differences occur. In other words it serves the purpose of establishing 

the variations and relationships between different quantitative morpho­

logical characters of two or more closely related species. 

Counts of spines and rays of fins, scales, vertebrae etc., constitUote 

meristic characteristics of fish. These characteristics form one of 

the important taxonomic tools for differentiating closely related species. 

1.2.5 Desigring experiments for quantitative inferences 

Designing field and laboratory experiments to quantify various biotic 

and abiotic phenomena in lI1uatic environment and Interpret casual 

relationships in quantitative terms of these variables on fish behaviour, 
growth, production, survival, spawning, etc. 

1.2.6 QJality control 

O'Iecking the quality of frozen fish and fish products using statistical 
quality control tech~ues. 
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1.2.7 Marltet reMaI'Ch 

Est imation of cost of production, price and price spread. estimat ion 

of supply and demand, consumption and distribution pattern, income. 
its distr ibution, investment and returns etc. 

1.2..8 Genetic studies 

Study of the var ious fish characters as regards to their heritable and 

non-heritable properties and patterns in different qeneratiOfls, efficiency 

of di fferen t selectic.n procedures for imprOV ing fish stocks etc. 

1.3 The need for fisheries statistics 

1.J .1 Statistical methods are needed for collection. compilation and interpreta­

tion of data required for planning, development and management of the 

fishery sector. 

1.3..2 Statistical methods are required to analyse and interpret the biological 

phenomena Characterising fisher y science. 

1.).3 Statistical methods are helpful in estimating the size of a\lailable fishery 

resources and t he proper level at which to maintain stocks in order 

t o obtain optimum yields/ 

104 Sources of f'l3heries data 

1.4.1 Handboa6c on fISheries statistics 

Nat ional fisher ies dat a are periodicall y re leased by Government of India, 

tlsheries Division, Minist ry of Agr icult ure and Cooperatic.n as en ott icial 
document for Central Board of fisher ies meeting. The latest is handbook 

00 'Fisheries statist ics'. It cooteins information on product ion, ellport" 
fishing harbours, training in fisheries, outlays and ellpendlture, prices, 

fishing resources and other aspects of f isheries. 
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1.4.2 Statistics of marine products exports 

It is published annually by the Marine Products Export Development 

Authority, Cochin. It contains inlormation on countr y-wise exports, 

region-wise export s, item- wise expor t s, average unit va lue, world market s, 

prices, marine fish landings etc . 

1.4.' Marine fisheries informat ion service 
(T ecmical and Extension series) 

It IS publi shed by the Central Marine Fishe ri es Research Institute, Cochin. 

It contains information on marine and brackish water fisher y resour ces 

and allied dat a. 

1.4..4 Yearbook of fishery statislics 

It IS published annuall y by the Food and Agricultural Organisation (F AO) 

of the Unit ed Nations. It contains data on wor ld catches, product ion 

of preserved and processed f ishery commodities, estimated total inter­

national trade, Imports, exports etc. 
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Chapter :r 

SO ... E BASIC CONCEPTS AND COLLECTION or DATA 

2.1 Population or Lhvene 

It is defined as the collection or an aggregate of all possible va~s 
(measurements or counts) of a particular characteristic for a specified 

group of individuals or the individuals themselve~ from which these 

values are obtained. For e.xlImple, 

il Population of fish weights of all fishes in a pond. 

ii) PopulatiOr1 of income of fishermen families in a state • 

.. 
iii) Population of fish lengths in a sea. 

A population can be finite or infinite. It is said to be finite if it contains 

finite number of individuals or units, Examples (i) and (ii) given above 

refer to finite populations. 

A population of unlimited or very large measurable number of individuals 

is called infinite population. Example (iii) given above refers to infinite 

population. 

The number of individuals or observations in a populatim is called 

population size and is usually denoted by 'N'. 

A group of individuals or !.nits that is chosen from a population is 

called a sample. 

A group of (say 60) fishes selected from a pond to study their lengths 

is an example of a sample. 
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The number of individuals or observations in a sample is called the 

semple size and Is generally denoted by 'n'. 

z.J SompIRJ 'rame 

It is a list, map or other specification of units which constitute available 

informatioo regarding the population. It forms the basis for orawning 

samples. 

2A RIPSom sample 

The type of sample of importance and meaning in ,4tatistics is the 

'random sample'. A random sampling is a method of ~mpling in which 

each individual in a populatioo has a pre-assigned hance of being 

included in a sample. Generally, units are drawn one y One from the 

population. If the chance of se!.ecting any un~t any BW is the same 
then the sampling is called simple random samplin hen the sample 

is so selected every possible sample has the sam chance of being 

drawn. Simple random sample can be obtained either by using the 'lottery 

method' or by the 'use of random number tables'. 

2.4..1 Lottery method 

In this method, first number the individuals (units) 01 the population. 

Then write these numbers on identical chits and fold them so that 
the numbers are not visible. Then place these chits in a box. Shake 
the box thoroughly and draw chits one by one till the number of chits 

. drawn equals the sample size. Note down the numbers of these chits. 

The individuals with these numbers form a sample. 

Prepared tables of random numbers (Table XXX Ill, statistical Tables 
by Fisher and 'r ales, 1963) are available for drawing a simple random 

sample. These tables consist of series of digits from 1 to 9 which 

appear independent of each other and appear approximately equal 

number 01 tiMeS. 
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As II first step, un I ts, of tha popu I lit Ion lira nU'll bered tran say 1 toN. 

Fran rllndan nllllber tables, se lact a number beTween 1 to Nand 
include the unit bearing this number in the sample. Continue this proce­

dure till the number of units included in the sample equals the sample 

size. In this procedure numbers larger than N are not considered. To 

avoid rejection of such numbers, modified procedures are adopted. 
One such procedure called 'remainder approach' is described below : 

2A.L 1 Remainder approach \. 

If N is a 'd' diglted number, determine first the hlcjlest 'd' diglted 
multiple of N, let this be N I Then a random number r is selected from 

1 to N '. DIvide this selected number r by N and find out the remainder. 
A unit with serial number equal to this remainder is selected. If the 

remainder is zero, the last unit (N) is selected. The procedure can 

best be illustrated with the following example: 

If N : 20, the highest 2 digited multiple of 20 is 80. Then select II 

random number from 1 to 80. Let this number be 72. DivisiQ"l of this 

number by 20 gives a remainder of 12: _Hence, the unit wIth serial 

number 12 is included in the sample. Select another number from 1 to 

80 and repeat the procedure, till the number of units selected equals 

the sample size. 

2...5 Sampling with Sld without replacement 

There are two types of random sampling procedures IIlz I sampling 

'with replacement' and sampling 'without replacement'. In samploinq with 

replacement, the units drawn are replaced back before the next draw 

is made. If a table of random numbers is employed, the number drawn 
previously Is considered In the subsequent draws also. In this procedure, 

the same unit can enter the sample more than once. In sampling without 

replacement, the unit once selected at any draw is not replaced back, 

so that the same unit cannot enter the sample more than once. If a 

table of random numbers is employed lor drawing a random sample, 
the number that has been drawn previously, is Ignored in the subsequent 

draws. If a sample of size n has to be drawn ftorn 8 population of 

size N, then there will be N
n 

possible samples in the cue of samplng 



with replacement and 
replacement. 

n 

B 

samples in 

2.6 Qualitative and Quantitative characters 

the case of sampling without 

The individuals or units 
These characteristics may 

of a population have some characteristics. 

or may not be numerically measurable. A 
characteristic which is numerically measurable is called 'quantitative' 

character, whereas, the characteristic which is not numerically measu able 

but is distinguished based on some quality or, attribute is known as 

'qualitative' character. Length of fish, weight of fish, number of fish 

discarded are some of the examples of quantitative character. Sex, 
type of fishing boat, etc., are instances of qualitative character. 

2.7 Constant, variable and attribute 

If a characteristic remains the same for all individuals in a population 
it is called a constant. 

A quantitative characteristic which varies from individual to individual 

is called a 'variable', where as, a qualitative characteristic which varies 

from individual to individual is called an 'attribute'. 

2.8 Continuous and discrete variables 

A variable which can take any value in a certain range including 

fractia1s is called 'continuous variable'. Length of fish, weight of !ish 

etc., are examples of continuous variable. 

A variable which takes only specific values in a certain range is called 

'discrete variable'. Number of fish discarded, number of fin rays, number 

of vertebrae etc., are examples of discrete variable. 

2.., .j Colleclian of dale 

There are two sources of collecting dala-primary source and seca1dary 

source. The data collected lhrough direct personal investigation are 

said to have been collected from a primary source, and such data 
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are referred to a5 'primary data'. The data collected from published 

or unpublished source are saId to have been collected from a secondary 

source. and such data are called 'secondary data'. There are two methods 
of collecting data. 

i) Census or complete enumeration and 

ii) sample survey. 

Y.l Census or complete enumeration method 

In this method the required data are collected on all the individuals 

or units of the populat ion. In order to study certain characteristics 

of a population, it is al ways advlsible to measure all the individuals 
of the population, in which case, census enumeration is adopted. for 

example, in 1980 the Central Marine Fisheries Research Institute, Cochin, 

conducted an all India census of marine fishermen, craft and gear 

to bring out an inventory of fishing resources avallaole In the country. 

~ Sample survey method 

In this method, the required data are collecte~ ~~e_~d~als 

or units selected from the population. When the population is large, 

most of the investigations are carried oot by this method and the re,ults 

are generalised for the whole population. 

Sample survey is the only logical alternative to census enumeration 

in the following situations: 

i) While dealing with infinite populations. for example, to study 

the characteristics of a fish population in a sea, it is not possible 

to collect and measure all the fish from sea and have to be 

satisfied with a sample. 

ii) If study requires destroying of units of individuals of the population. 

for instance, in estimation of 'facundity', finding 'biochemical 

composition' of fish etc., sampling is the only alternative. 
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2.10 Advantages and disadvantages of complete enuneration 

2.10.1 Advantages 

I) It provides a statistical fra~ to other census and surveys. 

ii) Complete enumeration is better when information required is 
greater from smaller areas. 

iii) Census enumerations are quite often used as the basis for .improv­

ing current st~~ 

2.10.2 Disadvantages 

2.11.1 

In the case of infinite populations, census enumeration is ,not practically 

possible. Census enumeration is costlt_.and requires more timq and ~. 
'-tii'i'ge scale census enumerations lead .!.2 non sampling errors, which 

are difficult to detect. 

Advantages and disadvantages of sample surveys 

Advantages 

i) Reduced cost : Sample surveys are les5 expensive and hence 
more stUdies can be carried out with fixed amount of resource~ 

like money and labour. 

ii) Greater speed : Sample surveys supply results quickly. 

iii) Greater scope : It is possible to have an intensive study in sample 

surveys. This is because a smali sample may be thoroughly investi­
gated whereas, for a large population, this may be impossible 
or too costly. 

Iv) Greater operational facility : In sample surveys there is greater 

operational facility as compared to complete enumeration 
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v) TIle only alternative : It obtains data that is not possible other­

wise, for instance, in the case of infinite population and also 

where the study requires destruction of units of the populat ion. 

vi) Scientific: It provides an estimate of sampling error which 
is useful in ascertaining the reliability of results. 

2.11.2 Disadvriages 

Breakdown of information for smaller areas or at sub-stratum level 

may not be possible in the case of sample surveys. 
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Chapter 3 

PRESENTATION or DATA 

3.1 Introduclioo 

Once data are collected, the first objective should be to summarise 

and present them 'In a form which high lights their main characteristics. 

ables, diagrams and graphs are important f arms of presentati on of 

statistical data. 

3.2 Classificatioo and tabular presentatioo of data 

In tabular presentation, observations are classified systematicall y in 

to different groups or classes on the basis of some common characteristic 

and are arranged in rows and columns of a table. Characteristic used 

as a basis for classification can be qualitative or quantitative.) r or 

example, in qualitative classification, fish may be classified as male 

or female. fishing units may be classified as trawlers, gill netters, dol­

netters etc. Fisherman population ' may be classified based on geographical 

considerations say according to the districts or states to which they 

belong. The quantitative classification is based on some measurable 
characteristic. f or example, fish may be classified according to their 

length, weight etc. 'An important form of quantitative classification is 

'frequency distribution' table. ) 

3.2.1 Frequency distributioo table 

It consists of dividing the range of observatiD"ls in to inter als (usually 

of · equal size) arft1 . noting of tM number of observations 'ailing in tq_'­

each interval (called frequency) and presenting it in a tabular form. 

The . aata presented in the form of a frequency distribJtion table Is 
called 'grouped dat.a'. 

The terms which are commonly used in formation of a fnquency distri­
bution table are explained below 



i) C'_ interval ._. c'_ limits 
/ 

A symbol defining a class 5-9 is called a class . interval. The 

end · numbers 5 and '1 are ca~d class limits, the smaller number 
5 is called the lower class limit and the larger number 9 is called 
the upper class limit. The terms class and class interval are 
often used interchangeably. 

ii) Inclusive IWld exclusive clasa intenaII 
V 

The class interval · for instance 5-9 will be called inclusive class 
interval if it includes all the values from 5 to 9 including the 

lower limit 5 and the upper limit 9. On the other hand, it will 
be called exclusive class interval if it does not include the upper 

limit 9. The given data can be classified either using inclusive 
or exclusive class intervals. 

If the lengths of fish are · recorded to the nearest-centimetre, 
the class interval 5-9 theoretically includes all measurements 

from 4.5 to 9.5 cm. These numbers indicated by exact numbers 

4.5 and 9.5 are called 'class boundaries' or 'true class limits'. 
The smaller number 4.5 is the lower class boundary and the 
larger number 9.5 is the upper class boundary. In the case of 

inclusive class intervals when the interval is in integers, class 
boundaries are obtained by substracting 0.5 from the lower 
class limit and adding 0.5 to the upper class limit. In general, 

the class boundaries are obtained by adding the upper limil 
of one class interval to the lower limit of the next higher class 
Inlerval and dividing by 2. In the case of elCClusive class inlervals 

class limits coincide with class boulderies. 

iv) The llze or width of c'_ InlerwI 

It is the difference between the lower and upper class boundaries. 
In the case of equal class intervals it is the difference between 

the two successive lower clast limits or two successive upper 

class limits. 
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v) CIBSS mark or C1BSS mid point 

I 
The class mark is the mid point of the class interval and is 

obtained by adding the lower and upper class limits an~+~ividing 

by 2. Thus the clas5 mark of the interval ,-9 is -2- = 7. 

The class mark is also called class mid point. 

General rules to be followed While forming a frequency distribution 

table 

1. The number of class intervals should ordinarily be between 5 

and 20 though there is no hard and fast rule in this respect·. 

It it exceeds 20 the computation becomes tedious and if it 

is less than 5, a great amount of accuracy is lost. 

2. Class intervals should be clearly defined. 

3. Open end class intervals should not be used. 

4. As lar as possible class -Intervals 01 equal size (width) should 

be used for the sake of ease of computations. 

5. It is convenient to make the mid point of a class interval a 

whole number, i.e. an integer. 

Steps in the formation of fr~y distribution table. 

The following steps have to be followed while forming a frequency 
disl r ibullon l able : 

'Sturges empirical formula for determining number of classes is 

k = 1 + 3.322 log N 

Where k is the number of clas~es and N is the total number of observa­
tionS. This formula takes in to account only the number of observaticns 

and not the spread of the variable under study. Hence this formula 
is not very sat is! actory. 
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1· Determine the largest and ~he smallest numLJers 

data and then find the range by substracting the 
in the given 

smallest " umber 
from lhe largest number. • ,\ 

Z. Divide the range into a convenient number of class inlervals 
having the same size. 

3. Determine the number of observations' falling into each class 

interval, i.e., find the frequency. This Is done by using tally 
marks. 

Example 1 

The lengths (in cm.) of 30 randomly selected fish are given below: ... 
14, 25, 17, 20,' 35, 38, 40, 25, 32, 31 
21, 27, 16, @ 19, 22, 4 30, 24, 29 
27, 34, 37, 35, 40, 26, 26, 34, 19, 20 

Arrange the observations into a frequency distribution table. 

Here the smallest observation is 11 and the largest is 49. Hence, the 

range is 38. If we take class intervals of width 5, there will be 8 
class' 'ntervals wtii~h is in acoordance ' with the r~'es te be followed 

in the formation ~ of frequency tables; We hsve to take class inter .. als 

in such-a way that the fir,t clsss intervsl includes the smallest ob5er\'8-

tlon and the last class intervsl includes lhe largest observation. 

Clall interval TaUy Frequency 

(length in em) rnarfcs (number of fish) 

1(1-14 " 2 
15-19 1111 4 

20-24 Jill 4 
2~29 )W'I 8 

Table contd. 



Class Interval 
(length In em) 

30-34 
35-39 
40-44 
45-49 

TOTAl 

16 

Telly 
marks 

..JH(' 

1111 

II 

Frequency 
(number of fish) 

5 
4 

2 

3D 

J.J Relative frequency distribution 

I 

The relative frequency distribution is formed by dividing the frequencies 

In each class of a frequency distribution table by the total number 

of observations. If the relative frequencies of each class are " expressed 

in percentages by multiplying by 100, the resulting distribution is called 

' percentage frequency distribution. The relative frequency distribution 

or percentage frequency distribution is especially useful in comparing 

two or more sets of data having different number of observations 
(total frequency). 

Diagrams and graphs 

In addition to frequency distribution tables, diagrams and graphs are 

also commonly used in the presentation of data. W~II designed diagrams 

and graphs make the unweildy data readily i~elli ible and bring to 
light the outstanding features of data at a glance. Diagrams and graphs 

are easily I.I"1derstood by a common man and the impression created 

by them is long lasting. They also make comparison of trends, value$., 

and relationships very easy. Graphs are also useful in locatinq___ some 
~ - "'-

statistical measures like median, quartiles and other partition values. 

Inspite of th;;e advantage~, it-m"Ust be ncrt;d that diagrams and graphs 
are merely visual aids and can" only supplement and not . replace 

tables or the original data. MOISt commonly used diagrams and graphs 
are discussed below : 
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3Ao1 Simple bar diagr.,.. 

It consists of lines or bars of equal width with 

to the value of the variable or character under study. Bars may be 

drawn either horizontally or vertically. These bars are simple to draw 

and are very effective for comparing the magnitude of different values. 

Example 2 

The following data represent the total fish producticrl in the country 

from 1975 to 1979. Represent the data by bar diagram. 

Year 

Fish proc'.Iction 

(Iakh tonnes) 

Answer 

21. 

23 
s 
':;' 
v 22 -g 
a. 2' 

.s:. 

'" U. 20 

o 
~ 

r---

1975 

1975 1976 

22.66 21.74 

~ 

r----

197& '977 
Ylar 

Fig. 1. Bar diagram. 

19TI 1978 1979 

23.'2 23.06 23.43 

r---
,..--

1978 
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JA.2 Compmeot at Stlxivided baJ diagram 

If the variable or character under study hes two or more component 

parts, then the component bar diagram is used, As in the case of simple 

bar diagram, the bars of equal width with length proportional to the 

total value of the variable are drawn with a convenient scale. Then 

lhese bars are subdivided into component parts and are marked in 

different colours to distinguish lhe components from one another. This 

diagram is more useful when one wants to compare the size and also 

the relation between each component and the total. 

}.A.3 ~Itiple baJ diagram 

When there are two or more different comparable sets of closely related 

variables or characters, multiple bar diagram is used. The diagram consists 

of multiple bars drawn contiguous to one another representing the 

component parts and then marked in different colours to distinguish 
the components. 

Example , 

The data on marine and inland fish catch (in lakh tons) from 1976 

to 1979 are given below. Draw (i) component bar diagram and (Ii) multi­
ple bar diagram. 

Marine 

Inland 

1976 

13.75 
7.99 

1m 

14.48 

8.64 

1978 

14.90 
8. 16 

1979 

14.95 
8.48 
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10 

• 

10 

Ii 

• 
4 

~ Mo"n, 

:: ... 

Vta'$ 
F 'g 20 Campananl bor doogrom 

Vear, 

Fit. 2b. .....Uiple Nr tfoOtram 

o Inland 

.. .. .. 

tZ1 
o Inland 
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3.4.4 Pie diagram (Pie chart) 

This diagram is used to portray .+elations.._ among component parts of 

the tolal. It is drawn by dividing a circle into different sectors with 

areas proportional to the magnitude (frequency) of the respective compo­

nents. Since the complete angle at the centre of the circle is 360°, 

the angle of degrees required for different components is worked out 

by the following formula: 

360 x magnitude of the component 

Total 

The circle is divided into sectors based on angles of degrees of respec­

tive components, using the protractor. 

[xample 4 

The following data show the areas in million square miles of the oceans 

of the world. Represent the data by Pie diagram. 

Ocean Pacific Atlantic Indian Antarctic Arctic Total 

Area 

(Million sq.miles) 70.8 41.2 28.S 7.6 4.8 152.9 

Answer 

To construct a Pie diagram we use the fact that the total 152.9 million 

sq.miles corresponds to the total number of degrees, i.e., 360°. Thus 

the angle of degrees required . for the different oceans are, 

Ocean ~ 

1) Pacific 360 
70.8 166.7 x = 152.9 

2) Atlantic 360 
41.2 97.0 x = 

152.9 
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Oce.t Arqa 

3) Indian 360 
28.5 67.1 l( = = 152.9 

4) Antarctic 360 
7.6 = 17.9 l( 

152..9 

5) Arctic 360 
4.8 = '1.) l( 

.152.9 

360.0 
--------

Fig. ] . Pie diagram . 
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The follow ing types of graphs are used in representing frequency distri­

butions. 

The histogram consists of \£.CLtical rectangles adjacent to each other. 

The area of each rectangle represents the frequencIes of the correspbho- --' 

ing class interval. In drawing the histogram first mark off along the 

x - axiyll the class intervals and then taking these class intervals 

as the bases draw rectangles with their heights proportional to the 

frequency of the respeclive class interval. The resulting figure is ca lled 

a "histogram" relating to the data of class inlervals of equal width. 

If the class intervals are of unequal width, the rectangles are drawn 

with heights proportional to the frequency density (ratio , of class fre­

quency to class width) so that the area is proport i onal to the class 

frequency. 

{[ the frequency distribution has Inclusive class intervals, first convert 

them into exclusive type and then draw the histogram] 

is drawn by plotting class frequencies again·t IJIid 

value als and then jOining these plotted 

points by .. small straiaht lines. Some times the polygon is left open 

at each end but usually It is closed by drawing a straight line from 

each pnd down to the horizontal axis (X - axis). The points on the 

horizontal axis that are chosen for clOSing the polygon are the mid 

points of the first class interval on either end of the distribution which 
has zero frequency. If the class Intervals are of unequal width, it is 

obtained by plotting the frequency density against the class mid values. 

Alternatively, hequency polygon can be obtained by joining the mid 

points of the upper sides of the adjacent rectangles in the 'htstogram. 
by small straigtll lines. 

f 
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Frequency curve is drawn by plotting class frequency ,against the mid 

values of the respective class intervals and then joining9 t'hese points 

by a smooth curve. When the class intervals are of dnequal width, 

It is obtained by plotting the frequency dens it y against the class mid 

values. Frequency polygon approaches the frequency curve when the 

number of observation (total frequency) is large and smailer clas$ inter­
vals ace used. 

Alternatively, frequency curve can also be formed by drawing a smooth 

curve through the mid points of the upper sides of the adjacent rect­
angles of the histogram. 

Frequency curves afe widely used for comparison purposes, for anal~sin9 
different statistical theories etc. 

Frequency polygon as well as frequency curves can also be constructed 

using percentages of frequencies of each class to the total frequency 

instead of the frequencies in each class. These percentages of frequencies 

are plotted against the mid points of the class Intervals taking the 

former on the Y-axis and the latter on the X - axis. This type of 

presentation is more useful in comparing two or more sets of data 
having different total frequencies. 

Example 5 

Draw (i) Histogram, (Ii) Frequency polygon and (iii) frequency curve 
for the following data. 

length of ,btl (nwn) 

5-15 15-25 25-35 35-45 45-55 

Numbers 9 21 40 22 8 



35 

30 

'0 

5 

24 

5 IS 15 l5 '5 55 
Class boundaries 

Frequency polygon 
Frequency curve 

Fig . 4. Hist09f'am, Frequency polygon and Frequency curw. 

lA.8 Ogive curves (' 

The graph of cumulative !regllegcy distriQMtian is known as ogive. 

Class boundaries are taken 00 X - axis. At each class boundary, the 
corresponding cumulative frequency is marked and these points are 
joined by 8 smooth curve. There are two types ogive curves for each 
frequency distributioo : (a) less than type ogive and (b) more than type 

ogive. The 'less than' type is obtained by plotting the less than cumulative 
frequencies against the upper I!lass boundaries while the other type 

is obtained by plotting the more than cumulative frequencies against 
the lower class bOUfldaries. The curve helps to find out how many 

items lie below a certain value of the variable of above it. Medi." 
quartll~ and other partitioo values 01 data can also be determined 
using ogive curve. 



25 

E.umpIe 6 

Draw ogives of the les5 than type and the more than type for the 
data CI'l fish length given in example 5 above. 

Arawer 

First prepare a cumulative frequency table of less than type lind more 

than type. For the given data the following cumulative frequency table 
is obtained : 

Class interval 
(length em) 

5-15 
15-25 
25-35 
35-45 
45-55 

Total 

Frequency CUII1UIMive frecpn:y 

Ie. ttwl more ttwl 

9 9 100 
21 30 91 
40 70 70 
22 92 30 
8 100 8 

100 

-_ 
,...-::--.. -~-. ' . 

/ .. 
J: 
j~ .. 
"__L _ ..... _ . . . ., . 

Now to get an ogive of less than type, plot the less than cumulative 

frequencies against the upper class boundarie , taking the class boundaries 

on X - axis and the cumulative frequencies CI'l the Y-axis and loin 

these points by a smooth curve. To get an ogive of more than type, 

plot the more than cumulative frequencies against the lower class 

boundaries, taking the class boundaries on the X - axis and the cumula­

tive frequencies on the Y - aleis and loin these points by a smooth 

curve. From the point of intersection of the two ogives. I perpendlculll 

is drawn to the X - axis.. The point where the perpendicular meet. 
the X - 8xis is the median. 
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MEASURES or C[NTRAl T[ND[NCY, DISP[RSION, 
SKlWNESS AND KURTOSIS 

4.1 Wroductlon 

Tabular presentation of data is useful in condensing large number of 

observatitrls in to a few classes or groups. Diagramatic and graphical 

representation facilitate comparison. of trends and relationships. However, 

more exact description of important characteristics of a data set is 

provided by single numbers called 'measures of data' or 'summary measures'. 

These measures describe data set in a simple and concise manner and 

enable us to gain more precise understanding of data. There are 4 

such measures which describe the important characteristics of a data 

set. They are, 

and 

(a) 

(b) 

(c) 

(d) 

Measures of 

Measures of 

Measures of 

Measures of 

central tendency 

dispersion 

skewness } r . __ , 
kurtosis ~ 

F or a major it y of biological characteristics the frequency distributions 

approximate to a symmetrical bell-shaped curve known as the 'normal 

curve'. For such frequency distributions- only the first two measures, 

nam~ the measures of central tendency and dispersion are important, 
'-Jr_ the third arid fourth being fix~ 
1"...-

U MeasJres of centr. tendency 

In bioi ical characteristics, generally, the observations taken on a group 

of individuals will not be equal, but shaw -;-g;;;;r.;i7endency to cluster 

around a particular value. This value ~lfound which---U; observations --tend to cluster is called the 'central tendency' or 'central position' of 
that group. 
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There are 3 commonly used measures of central tendency .... They are 

and 

(1 ) 

(2) 
(3) 

the arithmetic mean 

the median 

the mode 

t\..2.1 ~ arithmetic me... or average 

(a) Calculation from urtglouped data 

In an ungrouped data the arithmetic mean is simply the total 

of all the values divided by the number of observations. for 

example, if 5 observations of fish length (In cm) are 22, 38, 
23, 33, 2B, then the arithmetic mean will be, 

22 + 38 + 29 + 33 + 28 :: 150 :: 30 cm 

5 5 

Thus if there are n observations, x x
2

••••• •• )(, then the 
. . 1 I n aClthmetic mean which IS usuaUy denoted by T wil be 

x :: 

:: :l: x 

n 

• + x 
n 

where ::E: ,tands for the sum of all observations and Is read 

85 summation. 

(b) Calculation from grouped data 

(i) Direct method 

Suppose that the data are given in the form of • frequency 

distribution In k classes. Let x" x
2 
••••• x

k 
represent the 

mid points of 1st, 2nd • • • • • kfh class end r, f • ••• 

f their frequencies respectively. Then the .rrthme~lc mean 

i~ calculated by the formula. 



x : 

: ~\ 

n 

where n = L 

• + fk ~ 

(II) Short method for the computation of arithmetic 

The process of computation of the arithmeti 

quency table can be shortened by changin 
of the class intervals to a coded value, when 
are of equal size. This is done by assigning 

to any mid point (class mark) preferably one 

to the middle of the frequency distribution. The 

from fre-

of successive class intervals above and below this id point 

are coded as minus or plus deviations, d of 1, Z, 3 or more 
intervals. The mean is calculated by summing the products 
obtained by multiplying the frequency in each class by the 

corresponding d value of the class interval and dividing this -sum by n, the number of observations. Since this average is 

in coded values, it must be converted to the original units 
by multiplying by the width of the class interval 'h' and added 

to the mid point of the interval that was selected as zero. 
If~ is used to represent the mid point to which the value of 
zero was assigned, the formula for the arithmetic mean, calculated 

by this method is, 

x : A + hd 
: A + h L fd 

n 
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Example 1 

Compute the arithmetic mean for the follow ing Oata on fish length 
by (i) Direct method and (ii} Short method. 

Class interval 5-15 15-25 25-}5 .., J5-4~ 11 5-55 
(length in em) 

Frequency 

(No. of fish) 9 21 40 22 B 

Answer 

(i) Direct Method 

Class interval Frequency Mid point he 
( f ) (x) 

6 
, -1 , 9 1 10 _ 't 90 

1,-25 21 20 • I 420· 

25-" 40 30 ~ ,J-\ . t> lZ00 

35-4' Z2 40 , t 880.J 

45-55 B 50 "1 \. 400 

;£. f = 100 = n 2990 : L fx 

Arithmetic mean, x ::: ~ 
n 

= 2990 
100 

= 29.90 



St..t method 

eta. interv" Mid P'*'l Frequency 

(x) d f fd 

5-15 10 -2 9 -18 

15-25 20 -1 21 -21 

25-35 A 30 0 40 0 

35-45 40 1 22 22 

45-55 50 2 8 16 

Total 100 -1 

Arithmetic: mean, x = A + h' ~ fd 

n. 

= 30 + 10 (-1) 
100 

= 30-0.10 

= 29.90 

The medi ... 

The median is defined as the middle value when the values (ohservations) 

are arranged in the ascending or descending order of magnitude. Median 

divides the data into two equal halves, half the number of observations 

lying below it and half above it. 

(a' ~alion fram lIlCJI"~ data 

To find out the median from ungrouped data it is first necessary 

to arrange the values in the ascending or descending order 

of magnitude, with serial numbers 1, 2 • • • • • n, where n 

' stands for the total number of observations in the given da~a. 

If n Is an odd number, then the median is the value corresponding 

to the serial numbers n+1. If n is an even number then median 

is taken as the arithmeOc mean of the two middle values, I.e., 
the arithmetic mean of the values corresponding the serial 

n n 
number 2" and "2 + 1. 
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Example 2 

Find the median length for lhe following data on fish length (em) 
22, 12, 16, 32, 18, 26, 20 

Answer 

Arrange the observations, say, in the ascending order. 

51. No. 2 3 4 5 6 7 
Observation 12 16 18 20 22 26 }2 

Here the number of observations, n = 7 

Middle observation 
n+1 8 4 . is- = - = th Ilem 

2 2 

Hence, the median is the value corresponding to serial No.4. The value 

corresponding to serial number 4 is 20. Hence, the median is 20. 

Example 3 

Find the median for the following data 

22, 12, 16, 32, 18, 16, 20, 9 

Answer 

Arrange the observation in, say, the ascending order. 

51. No. 1 

Observation 9 
2 

12 
3 

16 

4 

16 

Here the number of observations n is 8 

~ - 4 and ~ + = 5 
2 - 2 

5 
18 

6 
18 

7 

22 
B 

32 

Therefore, the median is the arithmetic mean of the 4th and the 5th 

observations. 

16 + 18 
i.e., 2 = 17 
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(b) Cek:uletion from gr<qled data 

In the case of grouped data the formula for computing the 

median is given by, 
n f 

(- - c)h 
Median = L 1 ._.::.2 ___ _ 

where L : lower class boundar y of the median class 
1 I ' 

(median 

exceeds class is the c lass whose cumu atlve frequency equals or 
n , ) 2' Items 

n : Total frequency 

f = Cumulati ve frequenc y before entering the median class 
fC = The frequency of the median c lass 

h = Width of the class interval 

Example 4 

The size frequency of a fish sample is given below. Find the median. 

Size group 
(mm) 

Frequency 

Answer 

200-220 

10 

280-300 

40 

220-240 2LaO- 260 260-280 

40 120 150 

300-320 32O-J40 

20 20 

First find out the cumulative frequenc) and then locate the median class. 

Size class 
(mm) 

ZOO-Z~O 
" 220-240 

240-260 
260-280 

o 

f requency 

" ,10 1''1.,131 
40 

120 
150 

al 

Cumulative 
(frequency) 

1p 
~""1 ) 

50 
~ ' R '" zoo 17Q..w'_ - = 

)20~·- . ~:5.1 

Tab Ie contd. 



4.2..J 

2BO-JOO 
JOO-nO 
320-J40 

JJ 

40 
2Q 
20 

J60 
JBO 
400 

As ~ :: 200 lies between t~~umulative frequencies of 240-260 and 
2 

and 260-280 class intervals, the median class is 260-280. 

L :: 260, h :: 20, f :: 150, f :: 17(1 
1 c 

n f 
Median :: L, +(--c)h 

2 
f 

260 + 
(200 - 170) 20 

:: 
150 

260 + 
JO x 20 

:: 
'50 

:: 264 

The mode 

j 
The mode is defined as the ' most frequently occuring value. The mode 

may not exist and even if it exists it may not be unique as there may 

be more than one mode. A distribution having only one mode is called 

unimodal, whereas, the distribution having two modes is called bimodal 

and the distribution having more than two modes is called multimodal. 

We will be concerned mostly with unimodal distributions. 

(a) Calculation from ..... grouped data 

When the data are not grouped the mode can be located by 

arranging the observations either in the ascending or the descend­

ing order. This arrangement helps to find out the value which 

repeats large number of times. 

Example 5 

find the modal value for the following data on fish length 

1 Z. 22, 17, 9, 22, 2B, 17, JO, 20 .. J~ 
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Answer 

Arranging the data In, say, ascending order the following array is obtained: 

9, 12, 17, 17, 20, 22, 22, 22, 28, 30 

Here 22 occurs 3 times and the remaining observations ..A:cur less 

than 3 times. Hence, 22 Is the mode. 

(b) Calculation 'rem grouped data 

The class interval which has the maximum frequency is known 

as the modal class. The modal value lies in this class interval. 

The following formula is used for calculating the mode of the 

frequency distribution. 

Mode = L + 
(f - f ) m , h 

1 
- f 2f - f 

m 1 2 

where, L1 = Lower class boundary of the modal class 

f, : Frequency of the class previous to the modal 
class 

'2 
: Frequency of the class next to the modal 

class 

f : 
m 

Frequency of the modal class 

h : Width of the class interval 

If the mean and the median have already been calculated then 

the following empirical relationship can be used to calculate 

the mode of moderately asymmetrical distribution. 

Mode : :5 Median - 2 Mean 

Example 6 

nnd the mode for the data on length of fish given in example 4. 



JS 
,__ 
Sim group FI1ICJ*1CY 
(mm) 

200-220 10 
220-240 4() 

240-260 120 
260-2BO 150"" 
2BO-JOO 40 
JOO-JZO 20 
320-340 20 

400 

As the class 260-2BO contains the maximum frequency, it is the mod., 
class 

l -1 - 260, h : 20, f = m 
150, f 1 : 120, f2 = 4() 

Mode l1 + 
( f - f ) h 

: m 1 
2f - f - f 

m 1 2 

= 
260 + (150 - 120) 

(2 x 150 - 120 - 40) 
20 

JO 
20 = 260 + 140 x 

= 260 + 4.2B 

= 264.2B 

4.2.A Some characteristics and UIeS of different ~es of central tendency 

4.2.4.1 The arittv:letic man 

The arithmetic mean is the most ipyortant and commonly ~ measure 
of central tendency for statistical work in biometry. IE is • complete 
and adequate measure, as it takes into account both the total number 
of obser\latiON and their siy. The arithmetlc mean i. more useful 
when obser\latiON of ' t~e data are distributed symmeUcally and when 

other statistics are to be computed later. It I eatest weakness Is thlt 
it is affected by extreme \lalues. 
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The median Is not affected by extreme values and hence m.ore reprelu;n­
tative than the arithmetic mean in extremely skewed distributions. 

(It takes into accoun onl the number of observations and not their 
size. Hence, the median is ess reUable than the arithmetic mean lind 

1ll Ins les~ commonly used. However, occasions ofte.1 arise where 

median is the most appr~rlate. For instance, In the study of fishermen 

income, investment in fisheries etc. 

4.ZA.J The mode 

The mode Is particularly useful in the study of typical size. F or instance, 
boat yard is not interested in finding out the mean size or the median 

size of boat. Rather, it wants to find out the boat size most in demand 
so that it may build a larger quantity of that size. It is not affected 

J?x extreme values. In some distributions there may be two or more 

mode of ' e ual concentration which make the mode largely ~eless ) 
n such situations. It is not amenab e or further statistical analysis. 

It deliberately excludes arithmetical precision as its aim is to present 
a really typicat'" measure. It is, therefore n";it based on all observations 

of the data. The arithmetic mean is designed to be numerically accurate, 

and may have to sacrifice its typical feature some times for n~1 
accuracy. Hence, it is very often necessary to calculate both the mean 

and the mocre::- MOde is particularly useful in age and growth studies 
of fishes. Mode of length frequency data plotted over successive time 

Intervals (e.g. month) aid in the determination of age and growth of 
fishes. 

4.3 Measures of dispersion or variation 

A series of observations can be described by a measur.e of central 

tendency. Usually all observa ions will not be equal to the central ten: 

e ree to which the observa-

v is called the 'measu e 

,;;;.;._.:=;;:.;.;rs~i;:;;on",,';.J. None of the measures of central tendency indicate how 
the observations are scattered around the measure. Two seta of data 
may have the same mean but the observations in one may scatter widely 

around the mean and can be highly congregative in another. for example, 
consider two sets of data on length of filll in centimetres. 



Set 1 
Set 2 
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15 15 14 15 16 15 
22 14 1 2 17 1 0 15 

which have the same mean value 15, although the pattern of individual 

observations is different in both the cases. In set 1, the observations 

congregate around the mean, whereas, in the second none of the observa­

tions have the value of the mean and are highly scattered. Thus in 

order to get the true picture of the data a measure of the central 1 

tendency has to be complemented by a suitable measure of dispersion. 

Three important mea~ures of dispersion viz. range, mean deviation Ind 

standard deviation, are discussed here. 

4..3.1 Range ~ 

The ran e is defined 8S the difference bet ween the hi est and lowest 

values in a given data. 

ExlM11ple 7 

Compute the range for the following data on the length of fish .On. em):.. 

17, 22, 25, 18, 14, 19, 24 

"'-wer 

In the given data, the highest value is 26, and the lowest Is 12. Ttlerefore, 

Range = 26-12 = 14 

In a grouped data. the range is taken as the difference between the 

class marl< (mid point) of the highest class end ttle lowest class. 

Example 8 

Calculate the range for the following data. 



Class interval 

5-9 
10-14 
15-19 
20-24 
25-29 

Answer 

38 

frequ!,ncy 

2 
4 

7 
5 
2 

In the given 

be 25+29 : 
2 

data, the highest class is 25-29 and its class mark will 

27. The lowes ' dass is ' 5.9 and its class mark is 5+9 : 7. 
2 -

Range : Class mark of the highest class - CI~SS mark of the 
: 27-7 = 20 

.(' The mean deviation (average deviation) 

lowest, class 

. The arithmetic mean of the difference of each iodividuaLobservation 

f~om the mean ignoring sign is called the mean deviation. 

(a) CaIcu1ation !_rom ungrouped data 

let x,. x
2

' _. xn denote the values of 

study. Then mean deviation is given by 

the characteristic under 

I x - -; I + I x
2 

- -; I + • + I x - ~ I M. O. : _.;.., ___ ·_....;;.. _________ n __ _ 

n (my 
n ) : 

Exwnple 9 

Trawl catches (Kg) of '0 trips at a landing centre are given below 

35, ,8, 42, 40, 52, 38, 45, 32, 35, 43 

Compute the mean deviation. 



First compute the arithmetic mean, x and then substract l( from each 
observation. Add these differences irrespective of the siC)" and then 
divide by the number of observations to get the mean deviation. 

~ . 400 
Arithmetic mean = -;0 = 40 

5.No. 1 . 2 J " 5 6 7 8 9 10 Total 

x 35 38 42 40 52 38 45 32 35 43 

Ix-401 5 2 2 0 12 2 5 B 5 3 44 

L x 44 I x I 
Mean deviation = = = 4.4. 

'0 n 

(b) Calculation from grouped data 

Suppose that the data are given in the form of a frequency 

dis.tribution in k classes. Let x" x
2 
••••• lilt represent mid · 

pOints of 1st, 2nd, ••••• kth class intervals and f 1 I f 2 ••••• 
f their respective frequl!ncies. Then the mean deviation (M. D.) 
.k 
IS given by 

M. D. = 
Ix, - -;1 f, +lx2 - ;[ f2 + ••. +[ xk - -;1 fk 

n 

where x Is the arithmetic mean 

EumpIe 10 

Compute the mean deviation for the following data on net profit from 

adoption of composite flth culture in 100 farl1\1L 
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Net profit - Rs. in 1000/ha 

2-4 4-6 6-8 8-10 10-12 12-14 

No. of farms 5 10 40 25 15 5 

Answer 
Class interval x fx Ix-81 flx-8 1 

2-4 3 5 15 5 25 

4-6 5 10 50 3 30 

6-8 7 40 280 40 
8-10 9 25 225 1 25 

10-12 11 15 165 3 45 
12-14 13 5 65 5 25 

,Total 100 800 190 

)l 
800 

8 = -100 

M. D. 
190 

1.9 = -100 

Note: The mean deviation was computed taking deviat ions f rom arithmetic 
fon. 1( can also be orked out tak' devlau ons nom the mMlan • 

./ ~ to be noted that the mean deviation will be least when it.is a 

f~n. 

The variln:e Int standard deviation 

he var iance of calculated as the averl!9.e of squares 
• of deviat l!'!Os of obse~V ijlions from the arithmetic me n. While dealing 

with the variance of a sample, the sum of squares of deviations of 
.observations from the arithmetic mean Is usually divided by one less 

than the tota~ number of observations. Varianqe of a populati~is usuall y 
denoted by CJ , {here ~s variance of a sample is denoted by 5 • Formula 
for computing (1 and 5 are given below: 

2 = ~ ( x _ m) 2 > .,/' 
N 2 

1 [ ~ x 2 - (~ x») for ungrouped del. 
N N 

= 
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In the above expressial m is the populatial mean given by, 
~x 

m = N 

2 
q2 ::E f(x-m) 

lor grouped data = N 

= ~ (':E 2 (~ fx)2) 
fx -

N N 

If the estimate of population variance ,;z. is obtained from sample 

ments using x for m, the average qf -the squared deviations for 
at size n tend!; ta under estimate (1'". However, the quantity, 

' - 2 L (x-x) 
n-1 

measure­

a sample 

has the aver:ge value ri in repeated sampling. Hence, the formula 
to compute sample variance for grouped and ungrouped data are ' : 

UngTouped 52 !.: -2 - n-1 
(x - x) 

2 
= _1_[ ~ 2 _ (~ x) ) 

x 
n-1 n 

52 ~ 
-z · - n-1 

f (x - x) Grouped 

2 
= -!i [ }: z (:s: Ix) ) 

fx -
n 

The positive square root of variance is called the standard deviation. 

Populatial standard deviation i5 usually . denoted by 0 . where a5, sample 

standard deviation Is denoted by S. 

(a) poIooiation from ,oogrouped datil 

Exwt1pIe 11 

Calculate the varianCe and standard deviation for the following sample 

data on length (CIWI) of finger~, : 9, 5, 8, 9, 7, 4, 10. 8 
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D7064 

Serial No. 2 3 1\ 5 6 7 8 Total 

x 

2 x 

Number 01 

9 5 

81 25 

observations, n = 8 . 

8 9 7 4 10 8 60 

81 49 16 100 ]..§... 480 

(1: 
2 

. S2 _'-[L: 2 x) ] 
Variance = )( 

n-1 n 

= +[480 
_ (60)2) 

8 

= 2Q_ = 4.2854 .,. 

Standard deviatim, S = ...; 4.2854 = 2.07 

I (b) CaIcuIatiCWI from grlq)8d data 

Suppose that the data are given in the form of a frequency 
distributiD"l in k classes. Let x

1
' x

2 
x

k 
represent mid 

points (class marks) of 1st, 2nd • • • • • kth and f , f 2 • • • • 
f the respective frequencies. Let 'h' denote the ~idtn of the 
c~ass interval and n =:l: f) the total number of observations 
in the given data. 

The process of computation of s.tandard deviation from the 
hequency distribution table, when class Intervals are of equal 
size, may be shortened by changing the mid points of the class 
intervals to 8 coded value. This is done by assi'7ling the value 
zero to any mid point preferably to the one corresponding to 
the middle of the frequency distribution table. The mid points 
01 successive intervals above and below these mid points are 
coded as minus or plus deviations, d, of '. 2, :} or more intervals. 
Then the formula for working out the variance for a ,given 
data based on coded values is givlWl by 



Variance = n~l [~ ii - (s: Id)2] l( h2 
n 

Standard deviation = +'; Variance 

The above method of computing variance and standard deviation 
is usually relerred to as 'short method'. 

Example 12 

Calculate the variance and the standard deviation lor the following 

data on fish length using (i) direct method and (ii) Short method. 

Class interval 

(length in em) 

F reqlJencies 
(no. of fish) 

Answer 

5-15 

9 

15-25 25-35 

21 40 

(I) Direct method 

Class interval Frequency Mid point , x 

5-15 9 10 
15-25 21 20 
25-35 40 30 

35-45 22 46 
45-55 8 50 

Total -i I- '; lOa • 

E. f = 100, 
2 

E Ix = 2990, 1: Ix = 100500 

Variance = _1_ [E: fxl _ (~ fl()2) 
~-1 n 

-h-<,~ - 894(1) c . "IV 

35-45 45-55 

22 B 

liS 'x 'x2 

rrt: 90 900 

4.z6"0 420 8400 

4 {'I" 1200 36000 

"..tit) B80 35200 
'z,,{~9 400 20000 

~2990 100500 



44 

= ~9 (11099) 

= 112.111 

Standard deviatiU"l 

(ij) Short thad 

Class interval 

5- 1 5 
15-25 
25-35 
35-4§ 
45-55 

Total 

= 

= 

= 

Jvariance 

j112.111 

10.5SS ' 

Mid pOOt 

10 

20. 
)0 I 

40 
SO 

d 

-2 
-1 

0 
1 
2 

2 
h = 10, n = 100 I: fd = -1 L: fd = 111 

~.., 

~ 
I 
0 

I 

L., 

Variance = 
1 
-[~ 

2 (r fd)2 ) 
fd - x h

2 

= 

= 

= 

n-1 n 

1 
"99[111 

(_1)2 
- 100 ) x (10)2 

~9 (111 - 0.01) x 100 

~110.99) 100 = 112.111 
9~ 

Standard devialim:: ./Variance = J 112.'11 
= 10.5SS 

~..t( C~iIon of clfferent .._.es Df cIIpenicr. 

9 
21 
40 
22 

S 

100 

36 
1 

o 
i2 22 
16 32 

-1 111 

Of the 3 measures of dispersim discussed 10 f8f, range Is the e81iest 
to compute and provides same indication of the amount of vanibillty 



present in the data. However, it is not 8 satisfactory measure as it 
is based on only two out of the whole bulk of observat Ions. r or this 

reason it does not adequately reflect the information ' regarding the 

variability present in data, unless we are dealing with a small set of 

data. 

Mean deviation is easy to understand and simple to compute. It tokes 
into account deviations of all values from a measure of central tendency 

(say meap or median) and hence superior to range as a measl' f 
dis ersion. ' However, it has the dis'idvantage of being ' mathe~lly 
r~ound as al2~taic sigos~ totally disregar 1n its "';:omputa~ 

This mathematical flaw is one of the main reasons for the mel!!!... devlallon 

.~ beiOg used commonly. 

~he standard deviation resembles . the mean deviatiQr) in that it is also 
based on the deviati of every vaIJl·il'Bm 'the arithmetic mean. It 

has a further tage of being algebraically sound and hence can 

be Isfactorlly In further statistical analysis. ,..(ence, standard 

used measure of dis 

4.3.5 Relative measure of dispersion - Coefficient of varlatioo 

Coefficient of variatioo : 

All the above measures of dispersion have a unit attached to them. 

r or example, the standard deviation calculated from a data r corded 
in centimeters will have units as · centimeters and so on. Therefore, 

the variability of fish length recorded in centimeters and fish weictat 

in grams cannot ~ compared using standard deviation, as they are 

in different units.'~ such situatiOl's a relative measure of dispersion 
called the coeffici~ of variation which is independent of the units 

of measurements is used. It is calculated as the ratio of standard deviation 
to arithmetic mean and is experssetl in percentage, .1.e9 

Standard deviation 
Coefficient of variation = x 100 

arithmetic mean 

Ex.npIe " 

If the arithmetic mean and standard deviation of length of fish are 
32 and 8 retpectively, find the coeffiCient of variation. 



Answer 

Standard deviation Cop,fficient of variation ;; -'-.;__;...;..;_~..;.;;;;;.;.;.;= x 100 
arithmetic mean 

8 
~ ~ 100 - 25~ ~ 32 -

hample ,,, 

Two character length and weight were recorded on a random sample 

of 1 00 fishes of a particular species. It was found that the mean length 
was 50 centimeters with standard deviation of 20 centimeters, whereas, 
the mean weight was 200 grams with standard deviation of 65 grams. 
Find out which of the two characters IS more variable. 

Answer 

Coefficient of variation for length 
20 

= 5'[)X 100 

= 40% 

Coefficient of variation for weight 
65 

= 200 x 100 

;; 32.S," 

Since the coefficient of variation of length is more than the coefficient 

of variation of weight, the length is more variable than weight. 

Measures of Skewness 

Even if two frequency distributions have similar means and Yeriances, 

their frequency curves can , not be expected to be similar. One may 
be vastly different than the other. A frequency distribution is said to 
be symmetrical when the observations equidistant from the central 

maximum & have the same frequencies. The frequency curve of such 

distribution will be bellshaped as shawn in fig. 1. 
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Mean : Median: Mod. 

Fig. 1 Frequency curve of symmetrical 
distribution. 

Mode Mean 
Median 

Fig. 2 Positively Skewed curve 

MRan Mode 
Median 

f1g. J Negatively skewed curve 

aDd mode cniocide. 

ikewness means de arture 
f;._om·· s~mmetry. , If th 
frequency cur ... e of dla­
t r Ibutial ha. • lalCJ8r 
tail to the right of the 
central maximum than to 
the left, the distributial 
is said to be slcewed 
to the right or to h .... e 

IlQSltl ve skewness (Fig. 2). 
In such frequency dlstrlbu­

tialS. mean is grea!!!_. 
than the 

If the curve has a longer 
tall to the left of the 
central maximum than to 
the right then the 
distributlal is said to be 
slcewed to the left or to 
have negative s!cewneu 

-(Fig. J). In such distribu­

tions ean I. leu than 
the mode. 
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The degree of skewness can be measured b the Karl Pearson's coefficient 

a owing formula 

Mean - Mode 
~ Poefficient of $kewness = ----'-~---'-'-"--- ••••• (i) 
Y- Standard deviation 

in some frequency distributions it may be difficult to calculate mode 

accurately. In such C86es the coefficient of skewness which is based 

on median can be used. It is given by, 

Coefficient of skewness = 3 (Mean - Median) 

Standard deviation 

This coefficient is zero for symmetrical distributions and is .eositive 

fm- positively skcw;g distribution and negative for negatively skewed 
distributions. 

All <important and commonly used measure of skewness, ;which Is· based 

on the ( thl~ moment .about the mean (see annexure 1 for moments) 
Is given by, 

e = 1 

~ 
m) 

:3 
m

2 
Some times the measure of skewness is given by 11(, = v,­

r 

In the above formula m and m are 2nd and 3rd moments about the 

mean. T~ues of 6,2 and -,,~re zero for a symmetrical distribution. 
These measures of skewness are free from units of measurements and 

are therefore useful in comparing skewness of distributions recorded 
in different units. 
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Fig. 4. Kurtosis 

F requenc)' curve of a 
oistribution may be sym­
metrical It can still be 

different in structure from 
the normal curve. r Of 

instance it ma)' snow 
more peakedness or 
Ie 55 peakedness than 

normal cu[.ve. A curve 
of relatively higher peakedness than the normal ;;;';e is called leetokurtlc, 
where as the curve having a flat, top is called platykurtic (fig. 4). 
The normal curve which is neither very peaked nor flat-topped is called . 
mesokurtic. 

A measure of kurtosis which is based on the 4th moment about the m an 
is given by, 

• 
Fot normal distribution, "2 = 3. Because of this reason sometimes measure 
of kurtosis is given by '12 = ::tz - 3. In the above formula m il the 
4th moment about the mean. F or normal distribution t 2 I, equal ~o zero. 
It will have positive value for leptokurtic distribution and ne~tlve valu 
for platykurtic distribution. The degree of kurtosis il indicated by the 

maglitude of this coefficient. ( 

Any measure computed from all values of units in the population sudl 
as population mean, variance, etc., is called population 'parameter I, whera 
as, the measure computed from va~es_ of the Unitt In !hi MmPI. such 

• MmPle meen, aempte variance, : ~tc., II called MmPI. '1UtiItk'~ 
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In, -blological investigations, it is not practically possible to collect data 
on the whole population. Hence, the values of parameters are seldom 
known. They are estimated by statistics. 
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ANNEXURE 1 

Moments: 

The rth moment about the mean (m) is defined as the mean of the 
r ttl power of the deviations ot the values from rthe arithmetic mean. 

- r 

Thus, I:: (x . - x) 
( I) for ungrouped data m = I 

r 
n 

- r 

m = 
~ f (x . - x) 

(II) for grouped data I 
r 

n 

When r = 1, the formula (I) gives the first moment, 

m = 1 
r (Xi - X) = a 

n 

Thus the first moment about th~ ~-jthmetic mean is zero. When r = 2, 

the formula (I), gives m
2 

= E (xi - x) which is the variance of population. 

n 

When r = 3, the formula (I) gives the 3rd moment m3 and soon. The moments 
about the mean are usually called the central moments. 
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Chapter .5 

ELEMENTARY PROBABILITY THEORY 

.5.1 Introduction 

The basic foundation of statistics is the probability theory which aims 
to systematise the laws of chance to discover the regularities in the 
pattern ,in which the events depending on chance repeat themselves. 
Probability had its beginning with the games of chance such as the 
tossing of a coin, throwing of ' a dice drawing a card, etc., in the 17th 
century. It was only in the 19th century Gregor Mendel while studying 
the genetic laws in peas showed that it can be applied to biological 
investigations also. Since then, it is being applied very successfully to 
various problems in biology • 

.5.2 Terminology 

Some terms which are frequently used in probability theory are explained 
below 

(I) Deterministic experiment 

. 
If the same results are obtained when an experiment' is repeated 
under the same conditions, such an experiment is called determi­

nistic experiment.- For example, for , a perfect gas, PV = constant, 
provided temperature is constant. The same result will be obtained 
whenever the experiment is repeated. Thus the results of • 
deterministic experiment can be predicted with certainty. , 

II) R8ndom experiment 

The experiment which do not yield the same 'fesult wnen repeated 
under the same conditions g called random experiment. In such 

an experiment it is not possible to predict the result in advance 
with certainty. For example in tossing of a coin experiment 
one toss may yield head and other tea may yield taiL It is 
not possible in advance to predict the outcome with certainty. 



53 
" . "" 

~ I 

(jii) Simple event or event 
f 

Every distinct outcome of a random experiment is called sin ,.Ie 

event or an outcome. r or example, in tosSing of a coin 

experiment, head is one outcome and tail is another out come'. 

Hence, head and tail are the two events in tossing of a co;n 

experiment. In throwing of a dice experiment, getting number 

1 on top is one event, similarly getting 2, 3, 4, 5, 6 are other 

events. 

(i v ) Sample space 

The totai'ity or collection of all possible outcomes of a random 

experiment is called sample space. It is denoted by S. r or example 

in tossing of a coin experiment sample space consists of two 

events Head (H) and Tail (T). It is usually written as 

5 :: (H, T) 

( v) Compol.Wld event 

( vi) 

A compound event is the one which consists of two or more 

'\. simple events. For example, getting an even number in tossing 

of a dice experiment is a compound event. 

equally likely events or outcomes I tA~ 'i.. .... ) 

The outcomes are said to be equally likely when there 15 no 

reason to expect anyone rather than the other. r or example, 

in tossing of 8 coin experiment, either head or tail may appear, 

so that both the outcomes are equally likely. 

SJ Definition o(probability 

SJ.1 Derntion I : Classical or mathematical or &priori derlnilion 

Suppose an event E can happen in 'm' different way' (outcomes) out 

of a total of 'n' different equally likely ways (outcomes), then the 



probability of occurrence of an event denoted by p or P (E) is given 
by 

p = P ([) = No. of favourable ways to [ 
Total No. of equally likely ways 

m 

n 

Probability of an event is a non-negat ive number which lies 
between 0 and 1. Symbolically 0 ~ p ~ 1. 

Note 2 : If the event E can happen in 'm' ways out of total of 'n' 
ways, then the number of ways in which the event E will not happen 

is n - m. Hence the probability that an event E will not happen (denoted 
by q) Is given by, 

q = 
n-m 

n 

So that, ... q = 

= 
m 

n 
1-p, where p = mIn ---= 

i. the sum of the probabilities of occurrence arid non-occurrence of 

an event is equal to 1. 

Example 1 

What is the probability of getting head when . an unbiased coin is tossed? 
" 

Answer 

Total number of equally likely outcomes = 2 

No. of favourable outcome = 1 

Therefore, the probability of getting head denoted by P(H) is, P(H) : 1/Z 

Example 2 

What is the probability of getting an even number when an unbiased 

dice is thrown ? 
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T atal Number of equally likely outcomes :: 6 
Number of favourable outcomes :: J 
P (Even number) :: J/6 :: 1/2 

Example J 

In a ~ond containing 100 fishes, 20 are marked. If one fish is subsequently 
caught what is the probability of it being (i) marked (ii) unmarked? 

/ltrtswer 

(i) Total number of fishes:: 100 
Number of marked' fishes :: 20 

Hence, the number ot favourable chances for marked fish are 20. 

P(marked fish being caught) :: 10~O :: 0.2 

(ii) P (marked fish being caught) 

+ P (unmarked fish being caught) :: 1 
P (unmarked fish being cau;1ht) :: 1-P (marked fish beino CLUgI'll) 

:: 1-0.2 

:: 0.8 

In a composite fish culture experiment. fingerlings of 6 species of fish 

namely, cohu, cat la, mrigal, common carp, silver carp and grass carp, 
were stocked in the ratio of 1:1:1:2.5:3:1.5 respectively. A fingerling 

is subsequently drawn, what is the probability that It is of catla? 

Answer 

fingerlings of rohu, catla. mrigal, common carp, silver carp and gra" 
carp are stocked in the ratio of 1:1:1:2.5:3:1.5 respectively. Thu, out 
of 10 fingerlings we have 1 fingerling of 1 caUli. Hence, the probability 

th_ the fingerling drawn is of calla, :: 10. 0.10 
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5.3.2 Definition n : Relative frequency 
of probability 

Classical definition of probability defined earlier assumes that · outcomes 
are equally likely, the total number of outcomes are known and finite. 
When these assumptions are not met with, it is not possible to compute 
the probability of an event using the classical definition. In order to 

overcome the above limitations, a gew approach called relative frequency 
concept of probability 15 adopted.vAccording to thIs concept the probabilit y 
of occurrence of an event E is the limiting value of ratio of frequency 
of occurrence of the event to the total number ;;T ou~s. For instance 

if an experiment was repeated n dmes under the same cOnditions and 
if an event E has occurred f times, thel"l the estimate of the probability 
of an event E as the number of trials n increase indefinitely is given 
by, 

P (E) = . f 
Irm­

n 
n.., ao 

It is to be noted that as the number of trials (frequency) inete 

the estimate of probability of an ·event stabilizes around a particular 
v • 
---:-

Example 5 

The frequency distribution of lengths in 1000 randomly selected fishes 

of a parti::ular speCies are given below. What is the probability that 
a fish chosen at random will have length between 35-45 cm? 

Length: 

Numbers 
(frequency) 

5-15 

88 

15-25 

210 

25-35 35-45 45-55 

400 220 82 - 1 
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Frequency of the class interval 35-45 Is 220. Therefore, the relative 

frequency of this class to the lotal frequency is ~ = 0.22-
1000 

Hence, the probability that the fish chosen at random wlll have length 

between 35-45 cm is 0.22. 

Example 6 

One thousand fertilized eggs of a major carp were kept under observation 
to find out the number of individuals reaching different stages in the 

life history. Observed deta,regiven below 

State F ertilize~ Hatchling Fry Fingerling Adult I 

egg 

Number 1000 700 210 200 .196 

Find the probability that, 

(i) Fertilized egg reaches fingerling stage 

(ij) hatchling reaches fry stage 

(iii) fry reaches adult st&ge 

Answer 

(i) Out of 1000 fertilized eggs, only 200 reached the fingerlings 
stage. Therefore, the probability of fertilized egg reaching the 

fingerling stage is .1QQ.._ = 0.2 
1000 

(ii) Out of 700 hatchlings only 210 reached the fry stage, therefore, 

the probability of hatchling reaching the fry stage is _1lQ_ = 0.) 0 
700 

(iii) Out of 210 fry 196 reached the adult stage, therefore, the 

probability of the fry reaching the adult ,tage = .J2£. = 0.928 
210 



Two events A an~ • .8. _ ~~~ said to be mutually exclusive if the occurrence 
pr~the occurrence of another, i.e., both the events 

n simulta In other words A and B have no common 
outcomes. In the tossing a coin experiment, head and tail .are mutually 
exclusive events, 8S they cannot happen simultaneouslx. Similarl y in 
;, experiment on rolling a dice events of getting number 1 on top and 

the events of getting number 2 on top simultaneously are mutually 
exclusive as numbers 1 and Z cannot appear on the top of the dioe 

simultaneously. 

~ Addition theorem 

Let A and B be two events with respective probabilities P (A) and 
P (B). The prObability at occurrence of at least one of these two events 
denoted by P (A+B) is given by P (A+B) = P (A) + P (AB) 

where P (AB) is the probability of simultaneous occurrence of A and B. 

Cmollaty 

If events A and B are mutually exclusive, then P (A+B) = P (A) + P (B) 

It Is because P (AB) = 0, when A and B are mutually exclusive. 

Example 7 

In II certain district Z5~ of the fish farmers practice composite fish 
culture of rohu, catls and mrigal, 1 5~ fish farmers follow monm'ulture 
of rohu only and 10'" farmers follow composite fish culture as well 
as monoculture of rohu in their farm. nnd the probability that 8 randomly 
selected fish farmer follows at least one of the practices. 

Let events A and 8 be, 
A The farmer follows composite fish culture 
8 The farmer follows monoculture of rahu 
Then, P (A) = o.Z5 P (8) : 0.15 P (AB) : o.~Q 
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The probability that the farmer follows at least Iltle of the practlcn 
is denoted by P (A+B) and is given by P (A+B) = P (A) + P (B) - P (AB) 

= 0.25 + 0.'5 - 0., 0 

= 0.30 

Example 8 

A pond contains 150 fishes of rohu, 225 fishes of calla and 125 fishes 
of mrigsl. Find the' probability that a . fish randOOlly selected Is rohu 
or a cstla. 

Answer 

let events A and B be, 
A Selected fish is rohu 

B Selected fish is catla 

Events A and B are mutually exclusive as a fish selected c.-w'lOl be 

both rohu and caUa. Hence, 

P (A+8) = P (A) + P (8) 

P (A) 
150 3 

0.30 We have = = = 500 10 

P (8) 
225 

0.45 = = 500 

P (A+B) = 0.30 + 0.45 

= 0.75 

The events A and 8 are said to be Independent If the. occurrence of 
one does not depend on the occurrence 01 non-OCculTence of the other. 
far Instan~e ~ • C'*"' is tOIled two tlmel, the rnult of the .. coneS 
throw would in no way be .ffect~ r..,at of the flnt ttvow. 
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S.7 Cancltianal probability \ 

Let A and B be any two events. The conditional probability of event 
A, given that event B has happened, is denoted by P (A/B). Similarly, 

the conditional probability of B, given that event A has happened is 

given by P (B/ A). 

s.s Multiplication theorem 

Let A and B be two events with probability P (A) and P (B) respectively. 

Let P (B/ A) denote the conditional probability of. event B, given that 
eve.nt A has happened, P (A/B) the conditional probabil ity of event A, 

given that event B has happened. Then the probability of occurrence 
of both the events A and B denoted by P (AB) is given by, 

P (AB) . = 
= 

P (A) 

P (B) 
P (B/A) 
P (A/B) 

If events A and B are independent, then, 

P (AB) = 
= 

Ex8f11Jle 9 

P (A) 
P (B) 

P (B) 
P (A) 

In a pond containing 100 fishes, 25 are ·marked. If two are caught one 

after another and wlthQUt replacement, what is the probability that 
both the fishes caut;t.t are marked? 

Let A denote the event of catching marked fish in the first attempt 
and B denote the event of catching marked fish in the 2nd attempt. 

then P (A) Z5 
0.25 : ----

100 

The probability of drawing marked flih in the 2nd catch, given that 
the flut filh c .. cjlt was marked is, 
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P (B/A) 24 
= 99 

Hence, P (both the fish cauljlt are marked) = P (AB) 

= 
= 

= 

= 

Example 1Q 

P (A) • P (B/A) 

25 24 -- --
100 

6 
99 

0.06 

99 

A pond contains 200 fishes of which 40 are marked. A second pond 
contains 300 fishes of which 50 are marked. One fish is drawn from 
each of the ponds. What is the probability that the fisnes drawn are 
both marked? 

Let A denote the event of catching marked fish from 1st pond, B denote 
the event of catching marked fish from 2nd pond. 

Hence, P (A) 
40 

= 
200 

1 T ; P (B) --- --- -300 6 

As the events A and Bare iOdependent, 

P (AB) = P (A) • P (B) = + . ~ 
= 

Example 11 

1 
JO 

= 0.033 

M urn contains 5 white end 7 black pomfrets. A lecond urn contains 
7 ~ite and 8 black pomfrets. One pomfret is taken out at random 
end put into the second urn without noticing it. colour. A fish I, then 
drawn at random from the lecond urn. What is the proo.biJlty that 

It is a white pomfret? 



62 

Two cases arise here 

Case (I) 

Case (ii) 

• Pomflllt taken trom ,. urn is white 

Let A denote the event of drawing white pomfret from 1st 

urn and let B denote the event of drawing white pomfret 

fr om 2nd urn. 

P (A) =~, P (B/A) = + 
5 B 

Hence, P (AB) = P (A) • P (B/A) = 1~' -16-- 0.20B 

Pomfret taken aut 'rom 1st urn is blade 
/ 

Let A denote drawing black pomfret from 1st ufl)/ 'and 

let B denote drawing white pomfret from 2nd urn 

P (A) = ...J._, P (B/A) = 7 
12 16 

Hence, P (AB) = P (A) • P (B/A) = 7 . 
12 

= 0.255 

7 
16 

'..--' 

Therefore, required probability = P (Case i) + P (Case ill 
= 0.208 + 0.255 
= 0.463 
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Chapter 6 

PROBA DISTRIBUTIONS 

6.1 Introcb:tian 

Probability diltribution i. analogous to a relative frequency distribution 
with probabilities replacing relative frequencies. Thus, probability distribu­
tions can be regarded as theoretical or limiting forms of relative fre-- . quency distributions, when the number of obs.rvatlo,.. m_ Is very large. 

b T 81 dis rwutlons of 
fre uenc utions 

• 0 samples populations. F'requency distributions which 
-art e In practice can be approximated by well known theoretica' probabi-
lity distributions which serve as useful tools in making inferences and 
decisions under conditions of uncertainity on the basis of limited data 
or theoretica' considerations. 

6.2 R.ldom verieble 

It is a rumerically valued function defined over a simple spec .. ·. 

Prababilty clltrlbutian 

There are two types of probability distributions, discrete and continuous. 
Probability distributiQ'l is said to be discrete when it i, based Q'I • 

discrete random variable and continuous when it Is based Q'I • continuous 

random variable. 

A probability distribution for discrete randOl'l'l variable it • lilting ~f 
all possible values with respective probabilities of occurrence. As discrete 
random variable can take only a finite numbet of values or • countable 
infinite number of values, It is poIIible to liat all the valuet with the 

corresponding probabilities. In cue of continuoul random variable, 
it is no longer maningful and hence the prot.billty of a random variable 

failing in a given Interval II lilted. 
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[~1 

find the probability distribution of an outcome in throwing of a dice 

experiment. 

Let X denote the outcome of the experiment. Then the probability distri­

bution of X is given by, 

x 2 } 5 6 

p (X) 1/6 1/6 1/6 1/6 1/6 1/6 

Binomial distribution or Bemolli distribution .---
Binomial distribution is a disc t distrlbution.'1(" has areat practical 
applications in4.t.s.search and industrial inspection problems. It arises-lCdleD­
ever there is dichotomous classification, i.e. when an ~t (character) 

can occur in one of the two possible ways. F or exampl~, male or female, 
with scales or scaleless, dead or alive • .tall or dwarf, it responds or 
does not respond to a given stimuli and so on./rhe mathematical descrip­
lien ' of tbe Binomial distribution is as follows: Suppose that the individuals 
examined possess certain character with probability p and , does not 
possess it with probability 1-p = q. Then, the probability of X individuals 
out of a sample of n posseSSing the character is given by, 

p (x) 
x n-x nCxp q __ . ••••• (I) 

'X n-x . 
n! p If 

= ~! (n-x)! ~ 
for x = 0, 1, 2 ••••• n. 

The equation (I) is referred to as the Binomial distribution. If ' [ and 
n .re know.l, this distribution can be completely determined. Hence, 
p and n are called parameters of the Binomial distribution. In this distrlbu­
tia'l is assumed to be constant from observation to observation and 
oulcomes of observa lonl are independent. 
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6.3.1.1 Important properties of the ~ dhtrlUion 

(i) Mean of the binomial distrlbutiQ"l = np 
(ii) Variance of the binomial distributiQ"l = npq 

Standard deviatiQ"l = JOM 
( iii) for p = q = 1/2 It is symmetrical; 

0.4 
P(xllJ 0.3 

02 
0.1 

i 
o 1 2 X) , 

Fig. 1. Symmetric distribution 

For p <; 

0.5 
0.' 

P(xlO.l 
0.2 
O. 1 

1/2 it is 'positively skewed. 

, ,'e. 1I , r I'W... 0" . 

P=O.l 

o 1 X 2 1 , 
Fig. 2. Positively skewed distribution 
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r or p > 1/2 it is negatively skewed. 

O.S 
O.L 

P(X)OJ 

02 
0.1 

P:0.7 

~ 

f---

I 

o 2 3 x 
Fig. 3. NagQtiwly ska~ distribution. 

(iv) As n increases the binomial distribution approaches (tends towards) 
the normal distribution (to be discussed in 6.2.3) 

example Z 

t1 

Find the probability of finding only , catla in a sample of '0 fishes 
drawn one by one, if the probability of a catla being drawn in any 
draw is 0.2. r ; f 

Answer 

If we have a sample of size n, the probability of getting x catla is 
x n-x 

given by.P,'(x) = nCx p q 
for x = 0, 1 t 2 •.... 10 .:' 

In this example p . is the probability of a catla being drawn in any draw 
which is given to be 0.2, i.e., p = 0.2 

:. q = 1-p = 1-0.2 = 0.8 
sample size n = '0, x = 1, i.e. gett ing one catla 

Probability of getting one catla is 
p (1) = 1OC, (0.2)' (0.8)10-1 

= 10 (0.2) (0.8)9 

= 2(0.8) 
9 = 2 x 0.1}4 = 0.268 
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... 
What is the probability of finding 2 males in • sample of S 
one by one? (Assume probability of finding male fir.h : 0.5). 

drawn 

The probability of finding male :: 1/2 : p (say). The probability of 
not finding male (I.e. finding female) :: 1 - 1/2 :: 1/2 :: q (say). 

Applying binomial distribution, 

x n-x 
P (xl :: nCx p q 

with n :: 5. x :: 2.P :: 11l, q 
we have 
P (2) :: SC 2 (1/2)

2 
(1/2)

3 

5! 5 
:: 2!3! (1/2) 

5x4x3)(2x1 ( 1/2)5 :: 
2x1x3x2x1 

:: 5 
16 

:: 0.312 

6.3.1.2 flltklg of Binomial distriJution 

<i.. 

:: 112 

, Binomial distribution is fitted by estimating p trom the observed data. 
As the mean of the Binomial distribution · is np. dividing mean by n will 

give p. Once p and n are known, Binomial probabilities and the a.peeled 

frequencies can be computed. 

Ex.npie " 

The nomber of sets of catia which responded in Induced breeding out of 
10 sets tried per experiment were noted. A total of 100 such experiment. 
were conducted in • centre. The results are summarised In the 1011"",lng 

frequency dittributlcn table : 



Number responded (x) 

'frequency (f) 
fit the Binomial distribution. 

Answer 

Here n = 10,'ltfi :: 100 :: N 
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o 

r. fixi 659 
np = Mean = --- = -100 = 6.59 

~f i 

6.59 
Therefore, p :: -- = 0.659 := 0.66 

n 

q = , - p 
= 0.34 

2 3 4 5 6 7 8 9 10 
2 4 12 22 27 19 9 2 

The Binomial probabilities for dlfferent va lues of x are computed using 

the Binomial distribution, 

p (x) = x n-x 
nc p q x = 0,1,2, •... 10 

x 
Compulations are sUmmarised below, 

x o 2 J 4 5 6 7 8 

P (X) 0.0000 0.0004 0.0035 0.0181 0.0615 0.1434 0.2320 0.2573 0.1873 
[xpec- (I 0.04 0.35 1.81 6.15 14.34 23.20 25.73 18.7) 

ted· 

frequency 

9 10 

0.0807 0.0157 
8.07 1.57 

• (1Cp8cted frequency = N )( P (x) 
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Poisson distribution is another discrete probability distribution which 

has frequent applications in.Jauosl sampliog aperat.ions where the character 
or variate under study is the number of animals or species per unit 

of observation. In practice, if the count data represent the number of 

rare '!vents occurring within a given unit of time or space, the distribution 

of these counts can be described by the Poisson distribution. If 'p' 
the probability of occurrence of an event is very small and 'n' the 
number of trails is very large such that np is constant, then Binomial 

distribution tends to a Poisson distribution. Formula for the Poisson 
distribution is 

P (Xl : 
-m x 

e m 

x! 

)( = 0.1, 2 , •••• 

'Where e is the base of natural logarithm having a value of 2.7183. 
m is the mean of the distribution. If m is known we can completel y ' 

determine this distribution. ~n im ortant characteristic of h 

distribution is that its variance is ~ual to the mean of 

The Poisson distribution is positively skewe~ 

0.1. 

P(X) ~)')l,---f 
0.\ 

o 

m: 1. 

1 2 X ) 

Fi~. I.. Poisson d~tribution 

However, as m ( = np, when n is lar . incre8$8s, it will tend to normal 

distribution. OlSSon distribution, it is assumed that rlre events occur 
randomly and independently. Some examples of Poisson variable are 

numbel of ships arriving in a harbour per hour, number of animals per 
square of pla'licton speCies, number of car II!ivals per minut" It • toll 

bridge etc. 
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The data given below refer to the number of animals per square of 

a particular species of plankton counted in a plankton countin.g cell. 

Compute the Poissm probabilities and the expected frequencies 

Nt.mber of animals per square (x) o 2 3 

Number of suqares (f) 30 42 18 8 2 

Answer 

To compute Poisson probabilities, arithmetic mean 'm' of the distribution 

is required. 

In the given example, 

.::c fx 110 
m = --n- = 100 = 1.1 

The Poisson probabilities for different values of x are computed using 
the poisson distributial, 

-m x 
p (xl = ~, x = 0, 1, 2, 3, 4 

x: 
CCJI11)Ulations are sunmarised below 

X Probability (P) Expected ,~ 

(1) X=O p (0) 
-1.1 

0.33Z9 = e = 33.Z9 

(2) X=1 P (1) = e-1•1,.1 = 0.3662 36.62 

-1.1(1 )2 . _ 0.2014 20.14 
(3) ~=2 1 P (2) 

e .1 _ 
= 2! 

(4) X=3 P (3) = 
e -1.1(1.1)3 

= 0.0738 7.38 
3~ 

Table contd .. 



71 

x ProbabiUty (P) Expected fr~ 

(5) X=4 P (4) :: 
-1.1( )4 

e '.4 
4! 

:: 0.020) Z.O) 

* ElCpected frequencies are obtained by multiplying the respective 
probabilities by 'n', the total frequency. 

6.3.3 ~ cistribution 

Normal distribution is one of the mast important distributions In statistics. 
Its equation was first given by De Moivere in 17)). later It was redis­
covered and developed by Gauss in '_!l09 and by laplace in 1812. There­
fore, this distribution is sometimes referred to as Gausian and laplace 

distribution. The enti is called 
the normal curve has the 

y :: 

following equation. 

,f 2/ 
(x-m) 

~ 

. where m and a are respectively the mean and the standard deviation 

of ,the nor~1J.1 distribution. 

!!lull,. '"'I'''? 
1T and 'e are constants whose values are equal to 3.1416 anc 2.718) 

respectively. 

Normal distribution can be completely ideQtlfied if mean (m) and standard 
deviation (0) ate known. The distribution wi! vary dep n In upon 
the values of m an a (Fig. 5 l. It is continyous distribytion and can 

-;;;;>'" 
theoretically assume any value from - CD to + CD • However, for all 

practical purposes the values lie ilf the range of plus or minus thr 
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Fig !io. Distributions with same sTandard doviaTlon but different means 

cr : 11 

FI!= 5b 0 151 r ibut lons with soml! mQon but d l f f ~ r c.>nt stondar d dilvlolions 

6.).3.1 Properties of normal curve 

(a) It is continuous, symmetrical and bell-shaped curve. 

(b) It is assymptotic. Both the tails extend to infinity, i.e., the tail 

approaches the base but never touches it. 

(c) The arithmetic mean, median and mode cQincide. 

(d) The central position of the curve will be described by the mean 

and the spread of the curve by the standard deviation. 

(e) The coefficient of skewness is zero and the coefficient of kurtosis 
is 3. 

(f) (i) Mean plus or minus one standard deviation (m 1 (j ) includes 

68.00 per cent (6B.27~ to be more precise) of the total fre­
quency or total area of the curve. 



Fig. 60. Aria- betweCln m! J<f" 

(ii) Mean plus or minus 1.96 standard deviation (m t 1.96 cr ) includes 

95'r. of the total frequency. 

+-1 .96Cf: 1. 96~­
MClOn 

Fig. 6b. Area ixltWQQn m * 1. 966" 

(iii) Mean plus or minus 2.58 standard deviation (m t 2.58 (j ) include, 

99~ of the total frequency. 

Fig.6c . A rIG bet~n m ~ 2. 581'" 
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6.3.J.2 Area..-,der the normal curve 

The area bound by the normal curve and the x - axis is 1. Q.dte fre-
. quently the area under this curve that falls between two points on the 

~ - axis, say, X = a and -x = b is required. This area can be worked 
out using integral calculus. However, it is not necessary to work out 
the area by this method as tables giving the areas under the normal 
curve are available 10r ready use. These tables give the area under 
the normal curve which has mean zero and standard deviation one (called 
standard normal curve). Hence to make use of this table, we have to 
transform the normal variable X to a standard normal vSI'iable Z by 

the following relation, 

Z = 
X m 

CT 

As the standard normal curve is symmetric (Fig. 7) about Z : 0, the area 
between Z : 0 and any negative Z va lue, say, Z = -s, is equivalent 
to the area between Z : 0 and Z = '*l. 

Fig.7. Standard normal curve. 

Example 6 

Weight of a particular' species of fish was found to be distributed normally 
with the mean at 400 grains and standard deviation .50 grams. Find the 
stlWlda d normal varieLe of fishes with weights (i) 300, (ll) 4.50 and 
(iii) 430. 



(I) 

(H) 

(iii ) 
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Weight x :: }Oo, mean m :: 400 and IT :: SO 
X-m 300-400 

Therefore, Z - -- -- cr - SO 
-100 : 50 : -2 

When weight X :: 450, standard normal variate 

X-m 450-400 SO 
Z :: IT":: SO :: 50:: 

When weigh~ X 

Z :: 
X-m 

cr :: 

= 430, standard normal variate 
430-400 }O 

50 :: 0.6 50 

6.3.3.3 Different forms of area taLles 

Area under the normal curve is available in tables In dltrerent forms. 

F or instance 

(i) (n Fisher and Yates (1963) the area of normal curve is t bulated 

from Z to CO 

Fig. 70. AreO from z_ to GO 
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(iI) In Spiegel (1981) area of the normal curve is tabulated from 
o to any positive value of Z 

Fig. 7b. Area from 0 to Z 

(ill) In Woolf (1968) area of the normal curve is tabulated from 
- 00 to Z. 

Fig. 7c. Area from - ~ to Z 

Before referring to these table~ it is therefore necessary to know the 
manner In which areas are presented. 

In the present manual, area tables as presented In Spiegel (1981) are 
ref erred to. 



Ex....- 7 

The mean length of a one year old brood of catla Is )0 em and 51 andord 
deviation 2 cm. A fish is caught at- random, find the probabilit y that 
its length is, 

(I) 

(i) 

(b) 

(a) between 30 and 32 em 
(b) between 28 and 33 em 

Suppose it was decided to transfer ,II those having length greater 
than 31 em, what per cent of fish is required to be translared? 
Assume lengths are normally distributed. 

(a) Compute the standard normal variate 

I, when X
1 

= )0 and Xz = J2 
They are, 

X - m 
Z _~1 __ 

1 - a = 
30-30 

2 

x - m 
_2__ 32-30 

: 0- =-z-= 

The probability that the length of the fish caught Is between 

30 and 32 cm in terms of I will be, -

p (0 ~ Z ~ 1) = Area between (Z=O and Z=l) 

= 0.3413 

We get the area by referring to the area table of normal distri­

bution. 

length between 28 and 33 em i.e. X1 = ZB, Xz = )3, correspond-

ing standard normal variates are, 

Z, 
X, -m 2B-3D 

-1 = : : 

a 2 

X -m 
33-30 J 

1.5 : : -: 
Zz = Z Z 2 

fI 
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The probability that the length of the fish caught is between 
28 and 33 cm in terms of Z will be 

P (-1.$. Z ~ 1.5) = Area between Z=-1 and Z=1.5 

Here X 1 = 31 cm hence, Z 

= (Area . between Z=-1 and Z=O) + 

(Area between Z=O and Z=1.5) 

= (Area between Z=O and Z=1) + 
(Area between Z=O and Z=1.5) 

= 0.3413 + 0.4332 

= 0.7745 

X-m 31-30 
0.5 =-- = 

(] 2 

P (fish is having length greater than 31 . cm) 
= P (Z :> 0.5) 

= (Area to the right of Z=O) - (Area between Z=O and 0.5) 
= 0.5 - 0.1915 
= 0.3085 

Therefore, 30.85% of the fishes require to be transfe~ed. 

6.3.3.4 IrJ1)Ortance of nonnal distribution 

Normal distribution plays an important role in statistics because of the 

following reasons : 

(1) Numerous continuous 
length, weight, body 

dist r ibut ed. 

phenomena or ch_!!acters such as fish 

depth etc.. are approximately ~mally 

(2) Many of the _discrete distribulioos occurring in praetice such 
as binomial, poisson, etc.. can be approximated by _.! normal 

distribUtTiin. 

(3) Even when the variable is not normally distributed, It is possible 
t9. bring it to approximately normal, by simple transformations 

such as square root or logarithmic or arc sign, etc. 
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(4) Normal distribution has simple and interesting mathematical 
properties. 

(5) Normal distribution provides the basis for statistical inference 
(discussed in chapter 8 and 9). 

(6) Many of the distributions of sample statistics such as ~ample 

:nean t~nd to normality for large 'n' and hence they can be 
studied with the help of normal distribution. 
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Chapter 7 

SAMPLING DISTRIBUTIONS 

7.1 Sampling distributions 

From a population all possible samples of a given si::e can be drawn 

and for each sample a 'statistic' 5uch as mean, standard deviation, etc., 

can bp. calculated. For example consider an artificial population of length 

(in cm) of 5 fingerlings 1, 2, 3, 4 5 and with respect i ve length 

values 3, 4, 7, 5 and 8. It is decided to estimate the mean length of 

fingerlings from 8 sample of 2. n .ere will be 10 different samples of 2 

fingerlings each, if sampling is without replacement and 25 samples with 

replacement, that can be drawn from a population of size 5. Possible 

samples of size L when the sampling is without replacement are listed 

in table 1. Similarly 25 possible samples can be listed when the s~mpling 
is with replacement. 

Table 1 : 

5.No. 

1 
2 
3 
4 

5 
6 
7 

8 
9 

10 

In sampling 

one of th'3 

~s can be 

:He not the 

Different possible samples of size 2, when sampling is without 

replacemenl. 

Sample consisting individuals Sample values Mean 

and 2 3, 4 3.5 
and .} 3, 7 5.0 
and 4 3, 5 4.0 

1 and 5 3, 8 5.5 
2 and 3 4, 7 5.5 

2 and 4 4, 5 4.5 

2 and 5 4, 8 6.0 

3 and 4 7, 5 6.0 

3 and 5 7, B 7.5 

4 and 5 5, 8 6.5 
-lo 

without replacement, if a sample is randomly selected any 

10 samples listed in Table 1 is equally likely to be drawn. 

seen from Table 1, means computed for different samples 

same but hey varv. Thus there is a distribution of the 

means, which IS called the 'sampling distribution' of means. If variance 
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is calculated for different samples, it Is likely to vary from sample to 

sample and sampling distributiOl" of variance is obtained. Similarly, .samp1in9 
distributaons of other statistics such as standard deviation, median etc •• 
can be obtained. Schematic representation of the concept of 'sampling 
distribution' is pre:;ented below : 

stlWldarderror 

iMtf'"'ll ~.­iii .,.....,.. ..... ,.,.rI .. 
.. ".~ .. dI..,. .... . , .. ~ ... ,. 

The ~ and standard deviatiOn of sampling distributions of statistics 

can be computed as in the case of probability distributt>ons ba~ed on 
individual observation!;. The standard deviation of sampling distribution 

of a statistic is called the 'standard error'. Generally standard error 
decreases itS the sample size increases. 

7.2.1 standard error of S8IJ1:IIing clstrbJtlm of mean 

The standard error (SE ) of mean of a sample Is given by 

SE of mean = ~ 
/N-i" 
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where 0 is the standard delliatim of population. If the populatim 

is large (i.e., 'N' is large) or if sampling is with replacement then. 

SE of mean = o 
I-n-

If the population standard deviation is not known then sample standard 

deviation '5' can be used in its place, when n is large. 

Then, SE 
5 -

= rn-

Where 5 

7.'L2 Standard error of sum and difference of means 

If )(1 denotes th1 mean Ef a sample of size n drawn from a population 

with variable "1 and X2. denotes thezmean 'of a sample of size n 

drawn from a population wIth variance a 2' then variance of the distri~ 
bution of sum or difference of sample means is given by 

2 2 
Variance = 0: 1 + "2 

n, n
2 

(X, t X
2
) l-'j~ · " 2 

Standard error = 2 ) 
n, n

2 
EXDl'f'4)le 1 

Give the standard error of mean length for a sample of 25 fishes from 

8 populatkln with variance 4 cm. 

Given 

Variance = 4 cm 

Sample size, n = 25, 

Hence, standard error 

Hence, 0 = 2 

n = 5 
_!L__ _ 

I-
n

- -
2 
5 = 0.4 
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A sample of 100 fishes gave ttle estimates of mean and vau nee of 
a weight distribution of fishes 85 800 and 100 respectively. What is 
ttle estimate of standard error of mean ? 
Answer 
Here the population standard deviation is not known. Hence, we have to 
take the sample standard deviation as its estimate. 

Variance : 100, therefore standard deviation S : 10 

Sample size, n : 100, hence r-;;- : 10 

therefore, standard error : 
5 10 - 10 .;-;; 

Example 3 

The !tandard deviation of the weight distribution of a certain species 
of fish is known to be '10 grms. An investigator wants to find out the 
mean weight of filt! using a sample from this species. Determine the 
size of the sample required if it was decided that standard error of 

the mean should not exceed S grams. 

Answer 

Standard error of the mean : 
a 

It is given that maximum standard error allowed is 5 grms. Therefore, 

But it is given" = , 10 
Hence, (I) becomes 

(110) 
= '-n--

= (110)2 = 
2S 

12100 ---
~ 

( 1) 

484 

Therefore, umple size required is 484 fun. 
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Example 4 

The standard deviations of length in 2 fish populations are known to 
be in the ratio of 1:2. If altogether 100 fish are to be observed from 
the 2 populations, how many of each group should be observed in order 
to have the same precision on the estimate of the mean for both. 

Answer 

Let standard deviation of the 1st population 
of the 2nd population will be ~. Let n 

to be observed in 1st gfOUp. Then, standard 

be (J. Then standard devIation 

denote the number of fishes 
errOf of 1st population: 0 

;-;1 
Let n

2 
denote the number of fishes to be observed in 2nd population 

then, standard error of 2nd population = 2(1 

It is given that the precision of estimates of mean of the first and 

second population to be the same. In other words, standard error of 
the first and second population to be the same. 

a . 20 --- --i.e. .r;- .;-
, n 2 

Squaring both sides gives 

a 2 4 (J'l 

: 

2 2 
Multiply both sides by n

1 
n

2 
to get . n

2 
a : 40, a 

Divide both sides by J to get n
2

: 40 , ••••• (I) 

It is given that altogether 100 fish are to be observed, ' in other words, 
n

1 
+ n

2 
: 100 ••••• (II) 

But It Is known from (I) that n
2 

: 40, 

SubsUtute this In (II) to get 



01 + 401 = 100 

i.e. .5n
1 

= 100 

i.e. 01 = 20 

as 

But by (I) it is known that 02 = 40
1 

:: 4)(20=80 

Hence, observe 20 fishes in the first and 80 in the second 
populat ion. 

7~an.,ortant ~ of st.wJard error 

Standard error plays an Important role in statistical theory. following 
are its important uses : 

(1) To measure tfle plecision of a statistic Higher the standerd 
error lower is the precision of a statistic. 

(2) To ~ .confidence limits IQL population parameters. 

(3) To determine the size of the sample required to achieve the 
desired precision. 

(4) To compute , test statistic in tests of siqlificance. 

7.. r;entral limit theorem 

If a random sample of ° abserl/atlms is drawn from a population with 
mean nd standard' deviat~Jben the distributim of sample mean 

approaches the normal distribution with mean m and standard d~ ... lation 

_3_; as ° increases. 

;-;;-

It should 
the sa 
the sample is drawn 
normal distribution. 
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This theorem occupies a unique place in drawing of inferences about 
populations based on random samples, when the sample size is large. 
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C h a p ter 8 

ESTI M ATION 

8.1 IntroclJcUon 

Statistical inference, a branch of statistics is concerned with drawing 
inferences about 8 population based on the information contained In 
a sample. One of the important functions of statistical Inference IS 

estimation of population parameters from the corresponding sample 
st atist Ics. 

8.2 Types of estimators 

Population parameters can be estimated by two types 01 estimators 
viz: point estimators and interval estimators, the former estimation proce­
dure being called the, 'point estimation' and the latter 'Interval estimation'. 
In point estimation, an estimate of population parameter is specified 
by a single number, where as, in interval estimation, an estimate 01 
population parameter is specified by two numbers between which the 
parameter may be considered to lie. F or Instance, marine fish landings 
during this year will be 1.8 million tons is an example of point estimate. 
whereas, marine fish landings during this year will be between 1.6 and 
2 million tons is an example of interval estimate. 

8.} Properties of a good estimator 

F or a parameter there may be more than one estimator. Some estimators 
are better than the others. An estimator having the following properties 
is considered to be a good estimator 

(i) ~: 

An estimator is said to be unbiased if on an average, the value 
of the estimator equals the population parameter being estimated. 

F or example, In random sampling from • normal population, 
semple mean X i$ an unbiased estimate of the population mean 
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(ii) [ff'lCiency : 

If the sampling distribution of two statistics have the same 

mean, the statistic with the smaller standard error is called 

an efficient estimator of the mean. Thus efficiency refers to 

the magnitude of the standard error. 

for, example. sampling distributions of the mean and median 

both have the same mean equal to the population mean. but 

variance of the sample distribution of means is smaller than 
that of the median. Hence, sample mean is an efficient estimator 

of population mean. 

(iii) Sufficiency: 

An estimator is said to be sufficient if it takes in to consideration 

all the possible information available from the sample. 

F or example. in random sampling from a normal popUlation the 

5~mple mean is sufficient estimator of population mean, when 
(1 is known. 

(iv) Consistency: 

An estimator is said to be consistent if it approaches the value 

of the population parameter as the sample size increases • 

. for example, in a random sampling from normal population, 

the sample mean is a consistent estimator for the population 
mean. 

8A PcMt estimation 

Estimation of population mean and variance throuljl point estimation 
procedure is discussed here with the following example. 
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Example 1 

The prices of Peneus monodon (Rs./Kg) on 10 randomly selected days 
during a particu~th in a local market were found to be : 

88, 85, 82, 86, 85, 89, 90, 79, 81, 85 

Estimate (I) the mean 
and (ii) variance of prices of ~ monodon during 

the month. 

Answer 

(i) Sample mean )( is an unbiased estimator of the population mean. 

(Ii) 

Hence, sample mean is computed to estimate the mean price 
of Peneus monodon during the month 

x Ex i 
= n 

850 
85 = = 10 

An unbiased estimate of population variance is given by 

52 E (x 
- 2 

- xl 
= n-1 

( E 
2 

x - ( E x)2) 
= n-1 n 

= ~ (72362 -
(850)2) 

10 

= ~ (112) = 12.44 

Note : S =);2 = 3.5277 is an estimate of the population standa!d do.vla­
tion, but this estimate is biased The estimate · la aatlsf_ctory when ,,> ISO. 

IL5 klterval estimation ~ confidence limits 

In interval estimation, on interval is specified by two rumbers, within 
which the parameter is considered to lie with a specified probability. 
This interval is defined by confidence limits with a cert_1n degree of 
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probability. Higher, the probability, more is the confidence to be placed 

on the interval, to include the population parameter. 

The addition or substraction of 1.96 standard error to a statistic gives 

the confidence ' limits for population parameter with 8 probability of 

0.95. These confidence limits are called 95 per cent confidence limits. 

Substraction or addition of Z.58 standard error to a statistic gives confi­

dence limits with probability of D.99. These limits are called 99 per 

cent confidence limits. Like-wise the confidence limits with any desired 

level of probability can be computed. However, in estimation, 95 per 

cent and 99 per cent confidence limits are most commonly used. 

The 95 per cent and 99 per cent confidence limits for the population 

mean are computed using the following formulae 

The 95 per cent .confidence limits : 

' L
1

, lower limit :: X - 1.96 (SE of Mean) 

LZ' upper limit :: X + 1.96 (SE of Mean) 

The 93 per cent confidence limits : 

L l' lower limit :: X - 2.58 (SE of Mean) 

L
Z
' upper limit :: X + 2.58 (SE of Mean) 

In general the population standard deviation a is unkown. Hence, the sample 

standard deviation 5 ha5 to be used in its place. As mentioned earlier 

this estimate is satisfactory when n > 3D. But When n is less than 

30. confidence intervals ar~ computed using the table of t distribution 
which will be discussed later. 

)U5t as the magnitude of standard error serves as a measure of reliability 

lor 8 statistic, range of confidence limits also serves the same purpose. 

Smaller the range 01 the confidenr.e limits the more reliable is the statis­

tic as an estimate of the parameter. 

Example 5 

A random sample of n : 100 was selected to estimate the mean weight 

of fishes of a particular species. The sample me,., was found to be 
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630 grams and the standard deviation 60 grams. rind 95!O and 99~ con fi ­
dence limits for the population mean. 

Standard deviation is given to b'!; 60 grams I.e., S : 
Hence, standard error of mean -
(SE of mean) 1-;; 

60 
: 6 

The 95~ confide_!!ce limits for the population mean are, 
Lower limit : X - 1.96 (SE of mean) 

:: 630 - (1.96) (6) 
: 630 - 11.76 
: 618.24 

Upper limit :: X + 1.96 (SE of mean) 
: 630 + (1.96) (6) 
:: 630 + 11 .76 
: 641.76 

60 and n : 100 

Hence, the 95% confidence interval is 616.24 grams to 641.76 grams. 

The 99% confide_!!ce limits are, 
lower limit : X - 2.58 (SE of mean) 

: 630 - (2..58) (6) 
: 630 - 15.46 
:: 614.52 

Upper limit : X + ·2.56 (SE of mean) 
:: 630 + (2..58) (6) 
: 630 + 15.46 
: 645.46 

Hence, the 99,. confidence Interval will be 614.52 grams to 645.48 
grams. 

•••••••• 
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Chapter 9 

TESTING or H Y POTHESES 

9.1 Introductlan 

Testing of hypothesis begins with a statement called hypothesis about 
a population in terms of its parameter (5). A sample drawn frpm this 
population is observed to verify the statement. The hypothesis is rejected 
if the sample provides ample evidence to do so, otherwise it is not 
rejected. 

9.2 Terminology 

9.2.1 Statistical hypothesis 

9.2.2 

,/ 

Statistical hypothesis is a statement about the population under study. 

It is usually a statement about one or more parameters of the population. 
Such statement mayor may not be true. Some examples of hypothesis 
are mean weight of one year old oil sardine is 80 grams. Feed A and 
B are equally effective in increasing the weight of fish, the probability 
of getting number 4 when a dice is tossed is 1/6. 

Null hypothesis 

The hypothesis to be tested is commonly desi'7lated as "Null hypothesis" 

and Is .denoted usually by Ho. for example, to decide whether one fish 
processing procedure is better than the other in terms of shelf life, 
the null hypothesis is formulated as 'there is no difference in the shelf 

life of two procedures'. 

9.2.3 Alternative h~ 

Any admissible hypothesis that differs from a null hypothesis 15 called 

an alternative hypothesis and is denoted by H,. for example, in an 
experiment to compare the .efficiency of 4 feeds, the hypothesis that 
there Is no diffel'ence, is null hypothesis. where as the hypothes~ that 
there is significant difference among feeds is an alternative hypothesis. 
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9.2..5 

/ 

TIJIl IUlIIUc 

It is 8 function of sarr.ple values. It e).tracts the information about 

population parameter contained in tt-~ sample. The ob$e,ved value 0' 
the test statistic serves as a guide in rejecting or not relect ing the 
null hypothesis. 

After the test statistic to be used is selected, the set of possible values 

of 8 statistic are divided into two mutually exclusive regions lIiZI relection 

region (critical region) and acceptance region (Region of non rejection). 

If the obser ... ed I/alue of a test statistic falls In the relection re9iO"1. 

Ho is rejected. If it fells in the acceptance region, it Is not rejected. 

is to be noted that i f the observed value fells In the acceptance 

region, it does not prove the hypothesis , it simply falls to disprov" It. 

Type I and type 0 erran 

In testing a hypothesis two kinds of errors are likely to be committed. 
They ace Type I and Type II errors. If null hypothesis Is rejected when 

it Is actually true, then such error is called Type I error. On the other 

hand, if null hypothesis is accepted when it is false, then Type II error 

is committed. This is summarised in the following table: 

Table 1 : Statistical deciaion table 

Actual situatial Test decisiQ'l 

Ho true 

!-to false 

Accept Ho 

Correct decision 

probability = 1 - Cl 

Type II error 

"'-"" probability = ~ 

Reject Ho 

Type I error 

probability = a 

Correct decision 

probabilit y = 1 - " 

In order that any test f hypothesis to be good, It must be so desi9"ed 
_ to minimise both the elton i.e.. minimise both a and B 



94 

for 8 filled sample size It Is difficult to minimise both a end a, 
as an attempt to decrease one may lead to an Increase in ttle other. 
It is customary to fix a at a predetermined level and choose a test 
procedure that minimises B i.e., a is prefixed in a test and B is mini­
mised. Thus, we run the risk of rejecting a true Ho 100 a ,. times 
but reduce B, the acceptance of false Ho to minimum. Test criterion 

are developed on these principles. 

9.2.7 Level of si«.Jllfic.x:e 

In testing 8 given hypothesis, the maximum probabllfty with which we 
would be willing to risk a type I error is called the level of significance 
of the tests. In other words, It is a way of quantifying the amount 
of risk one wants to take in rejecting a true hypothesis. Usually 5,. 
or 1~ levels of significance are chosen. These levels, however, depend 
on the gravity of the risk vis 8 vis costs of decision making. To illustrate, 
suppose 5~ level of significance is chosen in designing a test of hypothesis, 
then there are about 5 chances in 100 that the hypothesis is rejected 
when it should be accepted, i.e. one is 95,. confident about the right 
decision. 

9.2.8 Degrees of freedom 

The number of Independent observations available from the data for 
, estimatiDr' of 8 particular parameter or a quantity is called the 'degrees 

of freedom'. 

It can be calculated by deducting from the number of observations, the 
number . of constants that are calculated from the data. for instance, 
the estimate of population variance based on a lample of 'n' observations 
is given by 

= 
E (X . _"X)z 

I 

n-1 

In this case the constant (parameter), papua-Uon mean, It estimated by 
the sample mean ~ Hence, deduct 1 from the total number of obIerva­
tlons

Z 
"n" to get the degrees 01 freedom, Leo, the degrees of freedom 

of 5 will be n-1. 
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9.3. Tests of hypothesil fill" large samples 

9. 3. lInt roduct.ion 
If a sample of size n i~ drywn from a normal population with mean 
m and standard deviation ({, then sample mean x Is also dIstributed 
as normal with mean m and standard devlationrf • This proposition 
holds good e\'en if the population from which the n sample is drawn is 
not normal provided the sample size is large (see central limit thecyem 
7.4). As ;; is distributed with mean m and standard deviation __:__! 

the standard normal variate is given by I~ 
x - m 

Z = 
o/r;;-

tJence, . nder the hypothesis 

H m = mo, the test statistic 
a 

x - m 
Z 

a 
= (JIm is also a standard normal variate. 

If ~1 and x
2 

denote the sample means based on n
1 

and n
2 

observations 
from popula{ions with means m, and m

Z 
and s anderd devia~o~ ~ 

and 02 respectively, then, from 7.2.2 standaro deviation (error) of (x -x
2

) 
is given by 1 

SE J- .tr1 ~ + (]2 2 

n 1 n2 • 

Mean of (x
1 

- )(2) is given by (m1 - m
2

) 

(x - x ) - (m - m ) 
1 2 1 2 

Hence, Z = 

J 
is 8 standard normal variate. Under the hypothesi. 

H 
o 
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z = 

The above discussions can be generalised as follows: 

Suppose under the null hypothesis, the sampling distribution of S is normal 

with mean m and standard deviation C1' then the standard normal 
. s b s variable is given . y 

5 - m 
s z = a 

s 

The area under the normal curve between m - 1.96 C1 and m + 1.96 a 
. is 0.95 (see 6 • • 3.1). Hence, in the case of standard normal variable 

which has mean zero and variance 1, the area between - 1.96 to 1.96 
will be G.9S. This, if the hypothesis is true, Z value computed from 

the sample will be between - 1.96 to 1.96 with probability at 0.95. 
On the other hand if computed value of Z lies outside the range 

- 1.96 to 1.96, it can be concluded that such a sample would arise 
with only probability of 0.05, if the null hypothesis was true. In this 

case it is infered that Z differs significantly from the value expected 
under the hypothesis and hence the hypothesis is rejected. 

In the tests involving normal distribution, the set of values of Z outside 

the range - 1.96 to 1.96 constitutes the region of rejection or critical 

region (rig. 1). 

Critical 
region 

I 

: Crit~ca l 
I region 
I 
I 
I 
I 0.025 

Fig. 1. Crittcal region, SY. level of significance 
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In the above discussion 5~ lel/el of significance was used. As mentioned 

earlier any lel/el of signlficance (see 9.1.5) can be used. If 1~ lel/el 
of significance is used, the region of rejection will be outside the ra ge 
- 2.58 to 2.58 (Fig. 2). 

Critical: 
region: 

o. 
I , 
I 

: Critical 
: region 

0.005 

Fig. 2. Critical region, 1 % level of significance 

9.:l.2 One-tailed and two-taDed tests 

If the null hypothesis H : m :: m is tested against H : m::j:.m (which 
o )0 .. 1 0 I implies m < m or m > m I then the Interest IS on extreme I/a ues 

of Z on both t~ils of the dis~ribution. In such cases the critical region 
is on both the sides as shown in figs. 1 and Z. Tests applied for such 

situations are called 'two-tailed' tests. 

If the null hypothesis H : ITI :: m I is tested against H1 : m > m • 
then the interest is in 0 the e)(tre~e value to one side of the meag. 

reg. 1. One toiled test 

, 
I 

: Critical 
: region 

0.05 



In such cases the critical region will be to one side of the distribution 
as shown in Fig. 3. Tests applied to 'such situations are called 'one 
tailed' tests. It is to be noted that the critical value of Z at 5'" and 
1'" level of significance for one tailed test are 1.645 and 2.33, whereas, 
these values are 1.96 and 2 • .58 for two tailed tests. 

9. 1.3 T est for single mean 

0 

, 

Let )(1' x
2
, ••••• )( be the values of a variable X, in a ~andom sample 

of size n f rom a p08ulation with mean m and variance 0 • On the basis 

of this sample, the hypothesis regarding the value m is tested. The 
null hypothesis tested is, 

H : m :: m, 
o 0 

where m is a specified value. 
o 

The following test statistic Is computed 

(x - rr. ) r;-
Z :: 0 

o 

where x is the sample mean. 

If I Z I > 1.96, reject H at 5'" level of Significance. 
0 

If I Z I > 2.58, reject h 
0 

at 1'" level of significance. 

Example 1 
A random sample of 144 fishes drawn from a certain species showed 

a mean length of 2~ cm. Can this be considered as a sample from a 
population witA mean 30 cm and standard deviation 16 cm? 

Atrswer 

H 
o 

m :: 30 

T est statistic used is 

Z :: (x mol r;;-
a 
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: 
(28 - 30) lit; 

16 

-24 
= -'.5 : 

'6 

Since I Z I < 1.96, H 
0 

is not rejected. 

Example 2 

A company used to manufacture nylon twines with mean breaking strength 

of ~? kg and standard deviation 2 kg. The company now claims that 
by a newly developed process the mean breaking strength can be in­

creased. II. sample of 64 twines taken from this I)ew process, gave mean 
of 4 kg. The standard deviation of the new process~s assumed to be 

the same 8S the old process. Can the company's claim be accepted 
at 5~ level of si!J)lficance? 

Answer 
'l'Y':: X. 

H m : 3.5 
0 

H, m > 3.5 

The test statistic to be computed is 

z : 

= 

(x-- m) 

~/r;-
0.5 x 8 

2 

= 2 

(4-3.5) V 

2![64'/ 
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As I z I > '.645, the null hypothesis is rejected. Hence, the company's 

claim can be accepted. 

Tests for equality of two population me.. 

Let X be the mean of a sample of size !!, from a population with 

mean ~ and standard deviation 0, and let X
2 

be the mean of another 

sample o'f size "2 from a population with mean ' m
2 

and standard deviation 

C2' To test the equality of population means the following null hypothesis 

is set up : 
Ho m : m 

1 2 
The test pro~dure_is to calculate, 

X - X , 2 z 

If I Z 

If I z 

: 

> 

, Id + 4 
':1 n, n2 

1.96, reject Ho at ~ level of significance. 

.2.58, reject Ho to ,~ level of significance. 

If 01 and q 2 are not known the sample stcndard deviations are used 
to estimate them. 

Note If the samples have been drawn from populations with common 
standard deviatioo then ol 

:: 

Example J 

-X -, X 2 

)0 

The mean length of 100 fish caught by sampling gear A was a cm 

with standard deviation of 2 cm, whereas the mean length of 120 fish 

caught by sampling gear B was 8.5 cm with standard deviation of 2.2 cm. 
Is there Significant difference between the lengths of fish caught 

by the two gears at 5r. level of significance? 
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Ho : There ·is no significant difference between the length of fish 
caught by the two gears. 

z x - X = 1 2 

fJT 
1 2 

= 

= 

= 

8 - 8.5 

~ + (2.2)2 

100 120 

- 0.5 

4 
100 

- 0.5 

+ 
4.84 
120 

0.04 + 0.0403 

- 0.5 

~ 0.0803 

:: - 1.7645 

Since I z I < 1.96 and also 2.58, Ho is nol o rejecled at 5" and 1~ 
level of significance. 

9... Test. of hypothesis for .mall .ampIea (n < JO) 

When the size of the sample is small, the distribution of various statistics 
are far from normality and hence tests of hypothesis based on normal 
variate cannot be applied. In such cases lests of hypothesis based on 
exact sampling distribution of 't' and 'F' ate applied. When ..,plylng - -these tests It is assumed that the population 'rom which lh sample I, 
drawn Is normal. 
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9.4.1 TM t - distribution 

The t - distribution is a sampling distribution derived from the parent 
normal distribition. This distribution is symmetrical about the mean but 

is slightly flatter than e norr,(!al distribution. Unlike the normal di~u­
tion it will be different for different size of the samJ:'ie 'n' or the degrees 

of freedom n-1. When 

the size of the sample 
is very small ( < 30), 

the t dist r ibuti on 
markedly differs from 

normal distribution, 

but as n increases the 

t - distribution resembles 
more and more a normal 
distribution (figure 4). 
The values of 't' have 

~~~~~~~ ______ ~ ___ _. ______ ~ ___ ~ __ ~~~~~b een tabulated for 
I. different degrees of 

freedom at different 
levels of significance 
(Fisher and Yates, 1963) 

-I. -3 -2 -1 o 
t 

2 l 

Fig. '. Stvchlnts t di stribut ion for varying 
d2gre2s of fr£2dom (df) 

Test of hypothesis based on t distribution are discussed below 

9.4.1.1 Test ' for single me.-. 

Lel X ,X , •••• X be 
1 2

1
, • h n 

normal popu atlon Wit mean 

of the sample. To test the 

procedure is used : 

Compute 

= 

a rand~ S8mp~ of size n drawn from a 
m. Let )( and 5 denote mean and variance 

hllPothesis Ho : m = m the following test 
o 

where 5 ={T 
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This t follows t distribution with n-1 degree of freedom. 

If I > the table value 01 . t at 5~ level Clf significance, then relect 
Ho at 5l1i level of significance. 

If I > the table value 01 t at 1% level Cli significance, then reject 
Ho at 1l1i level 01 sl(}"li licance. 

Example" 

A sample of 25 fingerlings drawn from a rea~ing tank showed a mean 
length of 75.8 mm and standard deviation 01 10 mm. Is the data consistent 
WIth the claimed mean size of 80 mm? 

Ho 

= 

= 

Sample is drawn from 8 Population w i'h me I' 80 mm. 
Calculate 

(T- mol om 
5 

(75.8 - 80) \['25 
10 

- 4.2) 5 
_:._-...:..:.;;:;~- = 

'0 
- 2.1 

The table values of t with 24 degrees of freedom are 2.064 at 5~ 

• and k.7V at 1% level of significance. Since I t I > the table value of 
t at 5~ level Ho is rejected at 5l1i level, but a5 I t I < the 

table value of t at 1'" level, Ho is not reject d -st 1~ lellelof SignIficance. 

9A.1.2 T_ng of cifference between two means (P<lPuJation varUwlces assumed 
ecpII) 

Let X and 5 be the mean and standard deviation of 8 sample of slze 

", from a no~mal population with mean m
1 

and let V and 52 be th me n 

and standaro deviation of another sample of size n_2 from. a nor~al 

population with mean m • To test whether th populatlCWl ,means 
differ lil7'ificantly, the fo~owing null hypothesis i~ set oJ) ' : , -
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'04 

Ho 

To test Ho, calculate, 

x - y 

which is distr itJuted as t with n, + "2 - 2 degrees of freedom. 

S in the above expression is computed using the formula 

j ( -2 -2 = r X - X) + r (Y - y) 

0, + n2 - 2 
S 

= J. (n, - 1) S/ + (n2 - 1) S/ ) 

\ ", + n2 - 2 

If It> the table value of t at·.'the specified level of significance, 

reject the hypothesis at that level. 

Example 5 

Weight was recorded separately for male and female one year old fish 

of species A. The mean weights of males and females are 

Sex 

Male 

Female 

Sample Size 

9 

'1 

Mean weic;1lt (g) 

70 
61 

Is there real difference In the average weight between the sexes? 

AIlswer 

Variance 

25 
16 

Ho : Samples come from the populations with the same mean. In other 
words, there is no sig-lificant difference between the mean weights 

of males and females. 
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To test the null hypothesis, calculate, 

x - y 
= 

Given, X = 70, Y = 6 1 

5 2 = 25 5 Z = 16 
1 ' 2 

n
1 

: 9, n
Z 

: '1 
First, calculate 

(n, 
. 2 

5 
- ') 5 + (n -

: , 2 

n, + n
Z 

- 2 

= 

J 2S ~'O )( 8 )( ', 6 

18 

~ 200 + '60 
= 18 

= ~ 20 

= 4.47 

Therefore, t = 

= 

= 

= 

= 

70 - 61 

(4.47V(" .J_ + _1_ ) 
9 11 

9 

(4.47).,[if 
99 

9 

(4.47) .[Q.2OZ 
9 

(4.47) (0.4494) = 

, ) 5 Z 
2 

" 

9 
z.o09 

: 4.48 
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The table value of t with 1 B degrees of freedom is 2.101 at 5:0. and 
2.B7B at 1 ~ level of significance. Since I t I ,. the table values of 
t at 5~ and 1 % level of significance. Ho is rejected i.e., there is signifi ­
cant difference between the mean weights of males and females. 

9A.1.3 Test of difference between two means of correlated observations (paired 
t test): Wh en the two samples of equal size are drawn from two 

normal populations and these samples aren ot inCiependen-r;- th en the 
pai red l . test is used. Dependent samples arise, for Instance, in experiments 

, when an, naivfciU81 is tested first under one condition and then under 
another condition, so that there will be two observations for tHe same 
individual. Let n be the size of each of the two samples and d , d 
••••• d the differeoce between the corresponding members 01 th~ 

n-
sample. Let d denote the mean of differences and S the standard deviation 
of these differenc;es. 

The null hypothesis to be tested is 

Ho = m1 = m
Z 

where m, and m
Z 

are means of 1st and 2nd population respectively. 

To test this hypothesis, compute, 

{d) Vn 
= 5 

It is distributed as t with (n-1) degrees of freedom. 

If I ,. the table value at the specified level of significance, reject 

Ho at that level. 

[xample 6 

The following table gives the marks obtained by 9 students in two 
tests, one held at the beginning of a year and the other at the end 

of a year after intensive coaching. Do the data indicate that the students 

have benefitted by coaching? 
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".... 

Ho : coaching has no effect. 

Student 1 2 3 II 
Test 1 S5 61) 65 75 
Test 2 63 70 70 81 

Difference (di) 8 10 5 6 

E dl = 47 

dj2 64 100 2S 36 

1: di 2 = 36S 

- dj 47 
d =1: -= :: 5.522 

9 9 

S = J ~l:d~ J Edf ) 
n-1 n 

:: J 1 
( 365 - ~) 

8 9 

245.44 ) 

~ 14.945 
! 

3.866 :: :: 

Therefore, t 
(d).[ji" 

:: 
S 

(5.22) (IT) 
:: 

3.866 

:: ~ 
3.866 = 

5 
49 
54 

5 

25 

:: J 
:: 

:: 

4.0~ 

6 7 
25 35 
29 32 

4 -3 

16 9 

+( 365 -

119.56 
8 

(5.22) (3) 

3.866 

8 9 
18 61 
21 70 

3 9 

9 81 

2~09 ) 

The table value of t with 8 degrees of freedom Is 2.306 at 5~ level 
of significance and 3.355 at 1 ~ level of sigllOcance. 



108 

Since I t I > the table value of t at both 5~ and 1 ~ level of signi­

ficance, Ho is rejected. In other words it is concluded that the coaching 

has benefited the students. 

9.4.1,A Confidence limits for population mean m 

In chapter No. 8, computation of confidence limits for population mean 

m. based on large samples using normal distribution was discussed. It 

was pointed out there that for samples with size less than 30, 't' distri­

bution is used for computing confidence limits. The formula for computing 

confidence limits using 't' distribution is as follows : 

Upper limits = x 5 
+ t--

~ 
Lower limit X 

5 
= -t--

~ 

Where X slands for the sample mean 
5 stands for sample standard deviation 

n stands for sample size 

t stands for the value of t with n-1 df which can be obtained 
\ from the table of t values, at ~ or ,,. level of significance 

depending upon whether 95~ or 99,. confidence limits 
are computed. 

Example 7 

r allowing data refer to catch (in tons) per haul of one hour duration 
in a trawl survey ofi a certain coast. 

1.2, Z.S, 1.0, 4.0, 3.0, 2.8, 0.6, 3.4, Z.S, 2.0 

Compute mean catch per hour and also 95'" confidence limits for catch 

per hour for the coast (population) under survey. 
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Answer 

95:-0 confidence limits are given by 

5 
X :t 

T a calculate these confidence limits the following compulat ions are 

to be made: 

Haul No. : 2 } 5 6 7 8 9 10 Tolal 

Calch/hour 
(X) 1.2 2.5 1.0 4.0 3.0 2.B 0.6 3.4 2 2. 5 23.0 

1.44 6.25 1.0 16.0 9.0 7.84 0.36 11.56 4.0 6.25 63.7 

2} 
Mean, X = 10 = 

52 = E 
n-1 

= 1.20, Hence, 

2.3 

X2 _ ( E 
n 

5 = 1.0954 

X)2 
) = 

1 

9 
(10.BO) 

From 't' table, the value of 't' with 9 d.f. al 5~ le\lel of significance 
is 2.2620. 

.. (2.262) (1.0954) 
= 

Hence, upper limit :: 

:: 

:: 

-.rw 
X + t 

s . 

Vn 
2.} + 0.78}S 

3.os}5 

= 0. 78}S 



Lower limit = 

= 
= 

110 

5 
X - t--

r-;;-
2.3 - 0.7835 

1.5165 

Thus mean catch per hour is expected to be between 1.5165 and 3.0835 
to'1nes. 

9.S The Oli-«juare (X
2
) distribution 

Theoretically, the X 2 distribution can be defined as the sum ' aL sguares 

of independent normal variates. If X , X , ----, X are n independent 
1 2 n 

standard normal variates, then sum of !q uares of these variates, 

)(,2 + X
2
2

,+ ••••• X 2 follows the X
2 

distribution with n degrees 

of freedom. The shape of n x2 distribution depends on n, the degress of 

freedom 'w~ich is also its mean (Fig.S). When n is small, the X
2 

distribution 
Is markedly different from normal distribution but as n increases the 

shape of the curve becomes more and more symmetrical and for.~ 

y 
os 

0' 

o 1 

01 

0' 

it can be approximated 

by II normal dist ibution. 
The values of X have 

been tabulated for di fferent 

degrees of freedom at 

d_it?erent levels of probabi­
lity. (Fisher and Yates, 1963) 

Most data on biological investigations can be classified either as quantita­

tive or qualitative (attribute) data. The statistical procedures discussed 

so far apply mostly to quantitative data. There are many instances in 

fisheries research, wherein attribute data describe the phenomenon 

under investigations more fdequ~te.'y .than. quantitative data. The 
chi-!quare test bRsed on X - distributIOn IS commonly used for a~ysis 

of attribute data. 
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9.5.1 Test for fixed-ratio hypothesis 

Many investigations are carried out to verify empirically some biological 

phenomena that are expected to occur under some given assumptIons. 

F or instance, a ratio of 3:1 is expected to occur in the F 2 generation 

of a cross bet ween tal! and dwarf plants. Whether this hypothesis of 

3:1 rftio is substant~ted by the actual observed data can be ascertained 

by X - test. This X test can be applied to test any fixed ratio hypothe­

sis provided the expected ratio is specified before the '"'lie tigation 

commences. 

If 0
1 

tefers to oOserved frequel'lcy and £i refers ~o the expected frequency 

based on the expected ratio hypothesis, then X is computed as follows: 

2 

X2 Ie. (0 . - E.) 
:::: E I I 

E. I 

k 0
2
. ( I) :::: E I 

1 E. 
-n 

I 

where n is t~e total number of observations and k is the numbtlr of 

classes. The X in (I) h8s~egrees of freedom. In this test the expec­

ted f.requency of each class should be more than 5. If any such frequency 

is small adjace{'ll classes may be grouped, so that the expec~ed frequency 

rs more than 5. 

If the calculated value 01 X 2 Is greater than the table value 01 X 2 

with (k-1) df, at specified level of significance the null hypothesis 

of specified ratio is rejected. 

Example 8 

A sample of 500 fish observed for determining the sex ratio, indicated 

that no were male and 270 female. Do the oOserved data fit the ell.pec­
ted ratio of 1:1 ? 
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Answer 

Ho : The observed data fit the ratio 111. 

On the basis of this hyp~thesis of 1:1 ratio, 250 fish are expected in 
male and female classes. X is calculated as follows : 

Sex 

Male 
Female 

Toyal 

Frequency 
Observed 

(Cli) 

230 
270 

Expected 
(EI) 

250 
250 

52900 
72900 

0i
2 

Ei 

211.60 
291-.60 

503.20 

----------------------------------------~---
. 2 
X = 

" = 503.2 - 500 
= 3.2 

The ~able value of x2 
with 1 df at 5% level of iignificance is 3~841. 

As X computed is less than the table value of X , the hypothesis is 

I not ~ rejected. 

9.5.2 Goodness of fit test for probability distributions 

Another important application of i is in testing if a set of quantitative 
data follows a specific probability distribution. In this test actual frequency 
in each category (or class interval) are compared with the frequencies 

that could be theoretically expected if the data followed the hypothesized 
probability distribution. To perform this test following steps are followed: 

(i) Hypolhesize the probability distribution to be fitted. 

(ii) Values of each parameter of selected probability distribution 

Is estimated from the given data If not specified. 



1" 

(iil) Theoretical frequencies for each class are estimated based 
on the hypothesised probability distribution. 

(iv) The following chi-square test statistic Is computed 

2 
It, 

X = E 
E. 

- n 
I 

It has (k -1) df, where k is the number of classes. 

(v) If the expected frequency of any class is less than 5, the adja­
cent classes can be grouped to form a class, so that expected 
frequency Is more than 5. 

If the expected frequencies are calculated on the basis of 

certal~ parameters estimated from data, the degrees of freedom 
for X is not (k-1) but is decreased by the number of parameters 
estimated. 

(vii) If Xl computed in step (iv) Is greater than the tabular value of 

XZ with (k-1) df at specified level significance, the null 
hypothesis that selected probability distribution Is a good fit 
to the given data is rejected. 

Example 9 

Test whether the data on number of animals per !quare of a particular 

species of plankton given l~ex8mple 5 of chapter 6 follows poisson distrI­
bution. 

Answer 

H 
o 

Number of animals per s~ua~ of a particular species of plankton 

follows PoIsson distribution. 



Expected frequencies using 

been computed in exampl~ 

and expected frequencies >( 

x O. 
I 

0 30 
1 42 

2 18 
3 8 
4 2 

Total 100 

/' 
0 .

2 

X
2 

=~ 
I -n 

E. 
I 

= 101.94 - 100 

= 1.94 
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Poisson probability distribution have already 
5 of chapter 6. Hence based on observed 

can be computed as outlined below: 

E. 
I 

33.29 

36.62 
20.14 

7.38 

2.03 

E. 
I 

27.04 

48.17 

16.09 

8.67 
1.97 

101.94 

As the mean m of the distribution is estimated from the sample, number 

of degrees of freedom = k-1-1 = 3. 

The table value of X2 with 3 df at 5% level of significance is 7.815 

= 1.94 < 7.815 

The null hypothesis is not rejected. 

9.5.:5 ..; - test fot independence of attributes in 2 x 2 contingency table 

Suppose that an attribute data of size n is classified according to two 

att ributes, say, A and 6 and the attribute A is further subdivided into 

two classes A1 and A2 and the attribute 6 into 6
1 

and 6
2

, Such attribute 
data can be presented in the form of a table called 2 x 2 contingency 

table as shown below. 
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Table 2 I 2 x 2 contingency table 

~ 1\, 1\2 Tot81 

8, a b a+b 

8
2 c d c+d 

Total a+c b+d a+b+C+d : n 

H2 : The two attrIbutes A and B are inde~ndent. It is tested by the 
X test. A simple formula for computing X of a 2 x 2 contingency 

tabl~ is given by, 

= 
2 

n (ad - bc) 
(a+b) (c+d) (8+c) (b+d) 

Where a, b, c and d are cell freQuen)ies of 2 )( 2 contingency table 
and n is the total frequency. This X has 1 degree of freedom. If, 

the e)(pected cell frequencies are large, the discrete Clistribution of 

probabilities 01 all frequencies appro)(imate to normal distribution. This 

appro)(imation holds good fairly well when the degrees of freedom are 

more than 1 and the expected frequen~y in the various classes is not 
small. As the degrees of freedom of X statistic of 2 x 2 conting ncy 
table is 1, X2 approximation in this case will not be satisfactory and 

leads to over estimation of significance. This is corrected by the method 

suggested by Yates which is known as 'Yates correction'. The correction 

consists of adding 1/2 to the observed minimum frequency an~usting 
the other cell lrequency for t~e observed marginal totals and then 
computing the X • Formula for X using the Yates correction in 8 2 x 2 

contingency table is given by, 

= 
(a+b) (c+d) (a+C) (b+d) 
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This correction is suitable when the expected frequency of c lasses is' 

less than " but estimation with correction can do no harm ' even when 

the frequencies are large. Hence it is always better to use the correction 

as a matter of : outine. 

Example 10 

In a series of experiments to test whether advanced stages of Myxcobolus 

Infection is cured by lime treatment, the following observations were 

found: 

Lime treated 
Untreated (control): 

Not cured 

86 
88 

174 

Cured 

14 
12 

26 

Total 

100 
100 

200 

Test whether lime has any effect in curing the Infection. 

Answer 

Ho : There is no association between lime treatment and the curing 

of infection. 

= 
1 

n (ad - bc) 
(a+b) (c+d) (8+c) (b+d) 

where a = 86, b = 14, C = 88, d = 12 

= 

= 

280 (86 x 12 - 14 x 88)2 

100 x 100 x 174 x 26 

200 (200)2 
= 10000 x 174 x 26 

x2 
with Yates correction 

= 
n (1 ad - bc - ~/ 

2 
(&+b) (c+d) (8+c) (b+d) 

= 0.0442 

• 

= 

0.1768 

200 <l86x12-14)(88\- ~Q/ 
100 x 100 x 174 x 26 
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2 
Since X calculated (with and without Yates correction) is ~ss than 

the table value (3.84 at 5~, 6.64 at 1~). Ho is not rejected. 

2 
9.5.4 Computation of X in r x c contingency table 

The r )( c contingency table is an extension of 2 )( 2 contingency table 

in which the data are classified into 'T' rows and 'c' columns (table J ). 
In this table the frequencies which occupy cells of the lable are called 

'cell frequencies' whereas row and column totals are called the 'marginal 

frequencies' • 

Table 3 : A r x c contlgency table 

Be Total 

011 012 01j 01c 

021 022 02j 02c 

A. 
I 

011 012 Oii Oic (A.) 
I 

Or1 Or2 Orj Orc 

Total n 

As the table consists of 'r' rows and 'c' columns, there will be r )( c 

observed frequencies, one in each cell. Corresponding to each observed 

frequency, there is expected frequency, computed based on certain hypo­
thesis. Under the null hypothesis of no relationship or of independence 

between the attributes, expected frequency of each cell is computed 

<5 _-
r 
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by multiplying totals of the row and column to which the cell belongs 

divided by the total number of observations. For instance, the expected 

frequency of the cell in 1st row and 2nd column Is obtained by multiply­

ing the 1st row total (A,) with . the 2nd column total (6 ) and then 

dividing by the total number of obseri'ations, 'n'. After catculating the 

expected frequencies for each celi, X is computed using the ormula, 

4' Oi
2 

X = '<'---n 
" Ei 

which has (r-1) (c-1) degrees of freedom. 

Example 11 

In a fish tagging experiment, the length frequency of tagged fishes and 

recoveries were as under. Test whether the length distributions can 

be accepted as same? 

length group (em) 

10-20 20-30 JO....o 40-50 50-60 Total 

Fishes tagged 108 140 256 35B 111 1000 

Fishes recovered 9 15 28 40 B 100 

Answer 

!-fo : There is no change in the length distribution 

Length (em) 

10-20 20-30 30-40 40-50 50-60 Total 

Fishes tagged 108 140 256 3B5 111 1000 

Fishes recovered 9 15 2B 40 8 100 

Total 117 155 284 425 119 1100 
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To compute X
2 

statistic the following computations are to be " 0 :e: 

Observed frequency (Oi) Expected frequency (Ei) 0i
2 

EI 

1. 108 . 1000 x 117 = 106.36 109.66 
1100 

2. 140 1000 x 155 = 140.91 1J9.10 
1100 

3. 256 1000 x 284 = 258.18 253.84 
1100 

4. 385 1000 x 425 = 386.37 383.63 
1100 

5. 111 1000 x 119 = 108.18 113.89 

1100 

6. 9 100~ x 117 = 10.64 7.61 

1100 

7. 15 10008 x 155 = 14.09 15.97 

1100 

8. Z8 100(1' l( 284 = 25.82 30.36 

1100 

9. 40 100(( x 425 : 38.63 41.42 

1100 

10. 8 10011 x 119 : 10.82 ~.92 

1100 

Total 1101.40 

X
2 E 

Oi 2 
= - n EI 

= 1101.40 - 1,1000 : 1.40 



120 

Table value of xZ with ~ df at 5~ level of siglificance is
2

9.488. As 

the calculated value of X is less than the table value of X , the null 

hypothesis is not rejected. 

9S6 Test of hypothesis about a population variance 

let x ,x --------)( be the values of a variable in a zrandom sample 
1 2 n 

of size n drawn from a normal population with variance C1 • 

The null hypothesis to be tested is, Ho : qf 2 2 
.: 00' where QQ is a 

specified value. Test statistic used is 

2 
(n-1 ) S 

.: 
(] Z 

(II) 

w~ere S2 is the sample variance, X2 in equation (II) is distributed as 
X with (n-1) df. 

If alternative hypothesis to be tested is 

(a) 

(b) 

(cl 

then reject Ho if 

X2 2 
cal > X a: /2 

H • Cf)2 > (J 2, 
1 • 0 

then reject Ho is x2 

< (J 2, 
2 0 

reject Ho if X < 

Example 12 

l-rJlJ_ 
.,;--0 

X~ - CI: /2 '\ 

A market survey conducted on 50 house holds, indicated that the average 

expenditure of house holds is Rs.40 per week on purchase of flah with 
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standard deviation of Rs.22. Can this data '-- I """ cons dered lIS 8 sample 
from a population with variance of Rs.400, at 5~ level of significance? 

Answer 

Ho a 2 
: 400 

H, q 2 
~ 400 

Test statistic to be computed is 

x2 2 
(n-') (5) 

: 
(J 2 

: (50-1) (22) 1 

400 

49 x 484 
: 

400 !J , 
59.29 

.. 
: 

Reiect He ' f X2 > X2 Xl < 2 
I , ' 

0.025 or x 0.975 

Otherwise do not reiect it 

1 -/ 
r or 49 df, XO.Q25 : 70.222 and Xl - : 31.555 

0.975 

As X2 lies between 31.555 and 70.222, Ho ;s not relected. 

,,/' 
9.6 The r distribution 

T~eoretically f' distribution can be defined as the ralio of two independ nt 

X variates with n, and n
2 

d.l. The shape of f' distribution completely 

depends on n and n • As n
1 

and n
l 

increase without limit the r distri­

bution approa~es S n~rmal distribution, If n : 1 an~ n
2 

iincreases without 

limit, r follows the t distribution. i.e~, r : t • l"'IIA r distribution 
embraces wide ranges of distributions like normal, X and t and tends 

itself to a large number of applications. Two Important usn of If' 

..!!!I:- 'testing equality of two variances' and 'test in the e alit of several 

means'. To arrive at sic;,liflcance, computed value of f has to compared 
.::==-
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Fig.G. F Distribution 
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F 

with the table val'ue 
af r. The values of 
r tabulated for different 

degrees of freedom and 

levels of significances 

are available (fisher 

and Yates, 1963). 

9..6.1 f test for testing. equality of two variances 

Let 5,2 be the variance of a sample of size n, ~d 5
2

2 
b2 the va~a~ce 

of a sample" of size n • To test the null hypothesIs Ho: ~ = tl2 I.e., 

pQ9ulation variances ire equal, the , following test procedure is used : 

5 2 
C~e: r = , 

5 2 
2 

1: - 2 
(x ' x) n, - , 

= 
1: -2 

n
2 

- , ~y , y) 

This tollows F distribution with n, 1 and n - 1 degrees ' of freedom. 
Generally larger sample variance is taken in th~ numerator while comput­
ing F. 

Computed value of r is to be compared with r with n, -, and n
2 

-1 

degrees of freedom at the desired level of significance to draw conclu­

sions. If r cal > r table' reiect Ho at the selected level of significance. 
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Example 1} 

Data on daily fish landings recorded for 30 days in a landing cent re 

showed variance of 60 kg whereas landings recorded for 25 days In 

another centre showed variance of 4() kg. Test wh ther the v9f1sollit y 
of daily fish landings is the same in two landing centres? 

Answer 

Ho 

F : 

Population 

S 2 
1 

5 2 
2 

: 

variances are equal. 

60 
40 = 1.5 

Compare this value with the table value of F with 29 and 24 degrees 
of freedom. Table values are, 

F = 1.94 

2.58 
at 5% 
at 1% 

1:
e the calculated value of f is less than the table values of r, Ho 

ot rejected at 5~ and 1!O level of signi ficance. 

est for testing equality 0' several means (Analysis 0' varilWlCe 

~) ~NOOA 

The t test enables us to test the si«;1'ificance of the diflerence between 

two PO\Jul lit:~ rneans. If there ,are three or more means, then to te,t 

wllE','Lher these have come from the same population or not, the r -test 

i':, used and the method is generally referred to 95 ' Analysis of Variance' 

technique. 

It is a systematic procedure of splitting the total variation into a number 
'of components, each associated w ith a possible source of varlabilit y. 

This is done with the objective of assessing the relative importance 

of different sources of variability. 
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If the data is classified according to one attribute, the resulting table 
is called one way table and the analysis of variance applied to this set 
of data is known as 'analysis of variance - one way classification' 

or 'one-way analysis of variance'. If the data is classified in the form 

of a two-way table, then 'analysis of variance - two way classification' 

is applied. Thus the form of analysis of variance depends upon the 

nature of investigation from which the data are collected. 

One-way analysis of variance is discussed here to explain the basic 

principles of this technique. 

Let there be k classes (samples) A
1
, A2 ••• A drawn from normal 

I . k . I . popu atlons 2wlth mean m , m , • • • •• m respective y With common 
. 0 L d 1 2 f k . . h 'h I vaflance • et n i enote the number 0 observations In t e It samp e, 

such that r n. = n, the total number of observations. 
I 

The following mathematical model is assumed for the analysis. 

J( =m+a+e 
il i ii 

where J(. . denotes the ith observation in the ith clsss (I = 1, 2 • . • 
. II 

• • k, I : 1, 2 • • • • • nJ, 
I 

m is the general mesn 

8 . is the effect of ith class 
I . 

e.. are In,pendentIY, normelly 
II . 

vii fiance I • 

The null hypothesis to be tested is, 

Ho m, = m
2 

= • • • •• = m
k 

distributed with mean zero and 

The values of )(" differ among themselves due to 
II 

(I) Variation from class to class 

(ii) Variation within classes 
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,.. -2 
The analysis of variance splits the total variation L, ()( • • - x) Into 

components due t a each of the sources of variabilit y rnerilioned above. 

5um of squares (55) and the number of degrees of fr eedom (df), Bre 

computed for each of the sources. Dividing the SS by the corresponding 

df, variances (mean squares) of the respective components are obtained. 

- -2 L n (x -)() ••••• (III) 
Mean square between classes: _i __ i __ _ 

k-1 

where x. is a mean of the ith class and x is the grand mean. 
1-2 

1: k . - x. ) 

Mean square within classes = 
(Error mean square) 

I I 

n-k 

••••• (IV) 

When the null hypothesis is true, the variance estimates of the two 

components given in (III) and (IV) are estimates of the same quantity, 

the population variance. As the two estimates are independent of each 

other, they may not give the identical value, but they are expected 

not to differ significantly, when the null t1ypothesis is true. Thus testing 

the rull hypotheSis of equality of several means, is equivalent to t esting 

the equality of these two variances. As discussed earlier (see 9.6.1), 
the equality of two variances can be tested by r ratio. Hence, the 

null hypothesis is tested by computing the following statistic : 

Mean square between classes -.../"~ ~ 1.) _ "t. (: - lc... ) J . 
Mean square within classes 

r = 

Compare this computed value of r with the table value of r with (k-1) 

and (n-k) df at a desired level of sic;t1ificance. If r calculated > r 
table, Ho is rejected. Rejection of hypothesis means that classes (samples) 

come from populations · with different means. 

The results of analysis of variance are usually summarised in the following 

table called 'Analysis of variance' (ANOVA) table: 
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Table 4 : Analysis of variance table . 

Source of variation df 55 MS F 

Bet ween classes k-1 S1 
51 = M " 1 
k-1 

S2 = M2 Within classes n-I< S2 n-k 

Total n-1 

The analysis of variance technique forms the basis of analysis of experi­

mental designs discussed in Chapter No. 12. r or worked out examples 

readers may refer to Chapter No. 12. 
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Chapter 10 

CORRELATION ANO REGRESSION 

10.1 Introcb:tion 

The statistical methods discussed so far are pTlmarily intended to describ 

a single variable i.e., univeriate populations. In this chapter the techniques 

that are useful in studying the relationships that exist when the data 
on two or more variables is available, are discussed. 

G. on the same individual, data on two variables say X and Yare listed, 

it is called a bivariate population. In this bivariate population. for every 

-Value of X, there is a corresponding value of Y. By treating these vari ­

ables X and Y separately, measures of central tendency, dispersion etc., 

can be worked out. In addition to these measures it may be of interest 

to study the degree of relationship existing between the variables and 

the nature of their relat1onship. The study of the former aspect is referred 

to as 'correlation' and the latter as 'regression' analysis. 

1Q.Z Scatter diagram 

If X and Y denote the two variables under study, the scatter c:'iagram 

is obtained by plotting the. pairs of values of X and Y taking variables 

on lertesiao c9-9rdinate~ This diagram gives an indication of whether 

the variables are related and if sa, the possible type of line or estimating 

equation which can describe the relationship. 

If the scatter of points indicates that a line can better fit the data. 

then the relationship between the variables is said to be linear. Scatter 

diagrams in Fig. 1 and 2 are examples of linear relationship. In Fig. 1, 
X tends to increase as Y increases, the relationship between the variables 

is said to direct and linear. In fig. 2, X decreases as Y increases, the 

relatiauhip between t-;;-;;;riables Is said to be Inverse !!ld ~at. 
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y 

x x 
fig. 1 : Direct linear rig. 2 : Inverse linear 

If the scatter of points indicate'.that a curve can better fit the data, 

then the relationship bet ween the variables i~ said to be non-linear 

or curvilinear. Some curvilinear relationships are shown in Figures 3 

and 4. 

-

rig. , : Direct curvimear 



y 

. .... .. ... .. 

Fig. 5 : No relationship 
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x 

If the scatter of 
points is as sholNn in 

fig. 5, t hen there 
is litt Ie or no relat lonship 

between the variables. 

10.3 Simple correlation 

It is a statistical tool to study the degree of asscciation or relationship 

existing between two variables, when the relationship is IlOear or ~roxl­

mately linear. TI"\!l degree .9f [elationship is QUAotifiad ~ coefficient 

called the 'Karl Pearsons product .. lllQCItmt correlation ::oefficient' or 
simply the '::o'rrelation coefficient.' It is denot~ r. The working formula 

for r is giv. en by ( E X) ( E y) 
E Xy -

n 
= 

~ ( 

In the above expression, X and Y denote the measurements on variables 
X and Y, n is the number of pairs of observations I.e. the sample size. 

10.3.1 Properties of correletlm coeffICient 

(. , 
./ 

(2) 

It is a pure number without units or dimensions. 

It lies between -1 and 1 i.e .. -1 ~ ~ 1. 

(3) The correlation coefficient is ind.ependent of the origin and 

the scale of measurement of the variatles. 
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The variables are said to be posit ively correlated if r is positive and 

negatively correlated if r is ne.9Btiv~ositjve correlation j~s that 
the change in 2 variables is in the same direction, i.e., as one increases 

the other increases or if one decreases the ether decreases. egative 

mre1atlon Indicates that -u;- variables change in opposite direction 

i.e., .s one increases other decreases. 

When r = +1 , there exists a strict linear relationship and the correlation 

tween the variables is said to be perfectly positive. When r = - 1, 
the relationship is linear and correlation between the variables is perfectly 
negat ive. The correlation coefficient equal to one (e ither positive or 

nega ti ve) indicates perfect correlation between the variables. Perfect 

cc.rrelation rarely occurs in biological data though values as high as 

0.99 have been obtained in some casses. The closer the value of the 

coefficient to one, the greater is the intensity or _: .!.. degree o~soclation 
between the variables. Values of r near zero may arise ""!len thece is 

no relationship or when there is real relationship but it is not linear. 

The total length and standard lengths of 15 fishes of a particular species 

were measured. Work out the coefficient of correlation for the data 
given below 

F"ish number 2 3 4 5 6 7 8 9 10 11 12 

Total length 110 104 114 119 145 116 124 141 175 135 145 171 
(mm) 

Standard length 83 80 85 91 113 85 ~4 110 184 102 115 130 
(mm) 

fish number 13 14 15 

T olal length 155 167 160 
(mm) 

Stanoard length 1' 0 125 121 
(mm) 
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Ar.wer 

X V XV X
2 

V
2 

1. 110 83 9130 12100 6889 
2. 104 80 8320 10816 ., 00 
3. 114 85 9690 12996 7225 
4. 119 91 10829 14161 8281 
5. 145 113 16385 21025 12769 
6. 116 85 9860 13456 7225 
7. 124 94. 11656 1 ~376 88 36 
8. 141 11 0 15510 19881 12100 
9. 175 134 23450 30625 1795b 
10. 135 102 13770 18225 1040" 
11 . 145 115 16675 21025 1 :3225 
12- 171 130 22230 29241 16900 
13. 155 119 18445 24025 14161 
14. 167 125 20875 2"'889 1S625 
15. 160 121 19360 2S600 14b41 

Total 2081 1587 226185 296441 172637 

E Xy - E X) ( E Y) 
= n 

~(E X2 _ ( E X)2 ) ( E y2 ( E y)2 ) - N n 

226185 
(2081) (1587) - 15 = 

(296441 -
(2081)2

l 15 
(172637 -

(1587)2) 
15 

= 6015.2 = 0.9941 
~ , (7736.94) (4732.4) 
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let r be the observed correlation coefficient in a sample of n pairs 
of observations from a bivariate normal population. To test the hypothesis 
Ho I p: 0, i.e. population correlation coefficient is zero, the following 

test procedure Is used I 

Compute: 

: 

Which is distributed as t with n-2 df. If the calculated val.ue of t is 
greater than the table valUe of t with n-2 df., at the desired level 
of significance, the correlation between the variables is significant. How­
ever, It is to be noted that significance of r is not an indication of 
the strength of relationship. It is simply a test to see whether p is 
equal to zero or not. The degree of the relationship between two variables 

can be measured by the square of the correlation c~!.!lCienLi~ (which 
Is called the cofflcient of determination). U1less r is very high, one 
variable should not be used to forecast the other. 

Example 2 

The correlation between length and weight for a particular fish species 
is observed to be 0.7 from a sample of 18 specimens. Is it significant? 

Ho I Population correlation between length and weight is zero. 

: 
0.7 )( 4 

0.7141 

= 

: 

0.7 .[i6 

~ 1-0.49 

1.92 

= 
0.7 ...f"'16 

~ 0.51 
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2..12, t (1~):: 2..92 
16 

Since the calculated value of t is greater than the table value of t 
at S~ and 1 ~ level of si'7'ificance, reject Ho. 

Hence, the correlation is hicj'lly significant. 

Nate : It is however, not necessary to carry out the "l" test de5Cribed 

above for testing the si'7'ificance of the correlation coeffiCIent 8S ready 

made table of critical values of r for different degrees of freedom .t 
5% and 1 % levels of significance is available (Fisher and Vates 1963). 

Compare the calculated value of r with the critical value of r from 

the table. If the calculated value of r is higher than or equal to the 
c ritical value, then correlation is si'7'lficant. 

vi . 
Simple linear regression 

If two variables are found to ~e highlr_ correlated then a more U$eful 

approaCh would be to study the nat:Jre of their relationship. 'RegreS$lon 
analysis achieves this by formulatin0atistical models which can 

best describe the$e relationships. These models enable prediction of 

the value of one variable, called the dependent variable from the known 

~ Of~he;--:-ariableW.lt differs from correlation in thategreS5ion 

stimates the nature of relationshi~ where as the orrelation coefticlen 

the or i tensit of relationshiP~ 

Simple lin;;r regression deaJs with the study of linesr relationships involving 

wo variables, where a5, the relationships amMg more than two variables 

are studied by the multiple regreSSion teChnique9 

10.1&.1 Estimalioo of parlWlleters 8 and b in lhe regression equation Y : ..oX 

Scatter diagram gives some idea of the nature of relationship existing 
between the variables (see 10.2). If it indicates that the relationship 

is linear in nalure, next step would be to develop 8 statistical - model 

and proceed to estimate the underlyirl9 relationship. It is assumed that 

linear relationship of the form, 



y = &+bX + e (I) 

exists between the variables X and V. In expression (I) e is a random 
variable (random error factor) assumed to 2be independently, randomly 
distributed with mean zero and variance a, 'a' and 'b' are constants 
(parameters). In this model it is assumed that ~ach V. is normally distri-
buted with mean a+bX. and constant variance (]. I 

1 

y 

6 
Y:o.bx 

I.. 

2 

, 2 1 4 5 X 

Fig. 6. Linear regression 01 Y on X 

fitting linear relationship of the form (I) is equivalent to estimating 
the constants a and b from the observed data. The best method that 
is used for estimation of 'a' and 'b' is the method of 'least squares'. 
In a popular way it only means that a line Is found to which the total 
of scrares of all distances from different points is minimum i.e. sum 
of e is .minimum. In other words search for the values of a and b 
which minimise, 

n 
t 
1= 1 

= 
n 2 
1: (V ra-bXI) 
1=1 

(U) 

In the above expression n stands for the number of pairs of observations. 

Estimates of parameters • and b which minimise (U) are obtained by 
the following formulae : 



b 
" (1: X) ( 1: y) ... xv -

= n 

a : Y - bX 

Estimated values of these calstants are substituted in the eQuatial 

Y = a...oX to et the re9ressial eQuatioo.- ~rom this equatial_ the value 
of Y can be estimated for a glve;;-~i X. - -_ 

1DA.2 Special names of the parameters 

There are special names for the parameters 'a' and 'b'. The parameter 
'a' is called the Y intercept. It is the value Y assumes when X : 0 

(fig. 6). The parameter 'b' is called the regressial coefficient _~ 

gives the 51 e of the re ression_ line, i.e" it shows how steep the line 
is. The regression coefficient indicates the rate of change in the dependent 
variable per unit charge in the independent variable, 

1DA.J Variance about the regressim line (deviations from regressim) 

The assumption behind the standard linear 

is 20rmally distributed with mean value a+bX
j .D which is not dependent on the value 0 

of this variance is given by 

= n-2 
1: (y -8-bX r 

I i 

regression Is thal each Y I 
and with 8 constant variance 

XI' The formula for estimate 

This forms the basis for en estimate of error in fitting the line. However, 
cmvenient formula to work out this variance is given by, 



I 
I 

where 

= _,_ r( l: y2 
n - 2 L~ 

= -'-( tl-
n-2 

2 
~ y = 
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(t y) 2 ) 

n 

2 
E xy) ) 

I: 2 x 

~ Xy (}; X) ( t y) .12 

_ ____;n.;..__ J 
t x2 _ ( t X)2 

n 

( 1: y)2 
is 

n 
corrected sum of squares of Y 

Exy = t xy _ ( t X) ( 1: Y) is corrected sum of cross products 

n of X and Y. 

2 ( !x)2 
Ex - -=---~ is corrected sum of squares of X. 

n 

1D.U Two regression rnes 

If two variables X IWld Yare open to choice as to which affects which 
then Z regression lines may be conceived. They are, 

(i) Regression equation of Y on X 

If Y Is considered as dependent variable, then the regression 
equation of Y on X is given by 

Y = a+bx 

The regression coefficient b is called the regression coefficient 
of Y on X and il usually denoted by byx. In this equation a 
and bare 10 estimated a$ to mlni~ise the r~dual variation 
(deviations from regression) of Y I.e. :x (Y.-a-bX) is minimised. 

I I 

(II) Regression equation of X an Y 

If X is considered as dependent variable then the regression 
~tlon is given by 

= It+bY 



I he regression coefficient b i e regression coefficiert 

of X on Y and is usually denoted by bxy. In this equation a 
and b are so estimated fS to _ minimise the residual variation 
of X i.e. E (X ,-a-bY ,) is minimised. The values of '0' and 

'b' obtained in (i) a~d (in' will usually be different. 

10A.5 Properties of regression lines 

(i) The regression lines intersect at point (X, Yl. 

( ii) If the variables are perfectly correlated, the regression 

lines co-incide. 

(iii) If the variables are not correlated the regression lines 

ace perpendicular to each other. 

10A.6 Relatitln between correlation and [egression coefficients 

If byx is the regression coefficient in the regression equation of Y on 
X and bxy is the regression coefficient in the regression equation of 

X on Y, then the correiation coefficient r is the square root of the 

product of byx and bxy. 

i.e., = ~ byx.bxy 

10A.7 Test 'If siqliflcance of Iflearity of regression (si",ificance of regression 

coefncient) 

The 5ig1ificance of the linearity of regression is tested by, 

(I) the metl'tod of analysis of variance 

or by 

(jj) t - test 

~fI hypothesis to be tested Is 

H a = 0, where a denotes the pOpulation regress l'ltl coefficient. 
o 
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(i) Analysis of variance method 

In this method, the total sum of squares of dependent variable 

Y is split in to two components. One due to regression and 

another due to errors of random sampling called deviations 

from regr '3ssion or residual. 

Thus, 

Total sum of squares :: Regression sum of squares + Residual surn 

of squares 

If the regression is based on n observations, the lotal sum of 

squares has n-1 degrees of freedom (dO, wher eas renression 

sum 01 squares has , df and residual sum of squares n-2 df. 

Dividing the sum of squares (55) by the corresponding df, respec­

tive mean squares (ms) are obtained. This information can be set 

down in the form of analysis of variance table as given below: 

Source df !IS ms 

Regression b 1: xy :: S, S, :: m, , 
1: 2 

S2 Residual n-2 y -b ( 1: xy):: 6
2 :: m

2 (Deviations from n-2 
regression) 

Total n-' E 2 
y 

1: E X) ( E y) , 
If" the above table xy :: }; XV 

n 

E 2 1:i- t y)2 y :: 

n 

The residual mean square indicates the variation not accounted 
by the linear reQression and therefore meuures the uncontrolled 
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variation that affects Y values. Si!1'ificance of regression coeffi­
cients is tested by comparing mean square due to regression 
with residual mean square, using F ratio. 

F = 
ms due to regression 

residual ms = 

This is distributed as r with 1, n-2 df. If the calculated value 

of F is more than the table value of r at the desired level 
of si!1'ificance, it is concluded that regression is statistically 
significant. 

(Ii) t - lest 

Alternatively, test of linearity of regression can be carried out 
with the procedure outlined below. 

Compute. 

= 
b - e ---:;;..= = 

sb 

which is distributed as t with n-2 df. In the above expression, 

s :3 the standard deviation of regression coefficient and is 
t~e square loot of 

Where 
and 

Residual ms 

1: (X_X)2 
= 

_C_E__..y_2 __ _.;...{ _E_xt..;.y)...;2/ ..... (_E_x_2'"-') J./(n-2) 

E x
2 

1: l. 1: x
2 

are corrected sum of squares of y and )( 
1: xy is corrected sum of products of X and Y. (See 10.4.3). 

If the calculated ' value of I t I is more. tt'oan the table value of 
t at the desired level of significance, the null hypothesis is 
rejected. 
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E- ample} 

The data on fish yield tested under S stocking de,:!sities ale given below: 

S.No. 1 2 3 4 5 
fingerlings 2 3 4 5 6 
('ooo/ha) 

Fish yield 2.5 3.6 4.4 5.0 5.4 
(t/ha) 

Compute: (i) the regression equ~tion of fish yield on stocking density. 

(ii) Estimate fish yield for stocking density of 4,200/ha. 

(Iii) Mean square due to deviations from regression. 

(iv) Test whether the regression coefficient is significant. 

Answer 

fr.gerlings fish yield 
('ooo/ha) (t/ha) 

X2 y2 X y Xy 

(1) 2 2.S 5.0 4 6.25 
(Z) 3 3.6 10.8 9 12.96 
(3) 4 4.4 17.6 16 19.36 
(4) 5 5.0 25.0 25 25.10 
(5) 6 5.4 32.4 36 29.16 

Total 20 20.9 90.8 90 92.73 

t Xy -
1: X) ( t y) 

90.8 -
(20) (20.9) 

b : n : 5 

txl _ E X)Z 90 - (10)2/ 5 
n 

7.1 
0.72 ---. 10 



.a = Y - bX = "-18 - (0.72>'4 = 1.3 

Hence, V = 1.3 + 0.72 X 

(ii) To obtain the estimate of fish yield when the stoc:tmg density 

II 4,200, put X :: 4.2 In the aboYe equatlo\. 

i.e., Y = 1.J + 0.72 (4.2) 

= 4.32 tons 

(iii) Meal SCJJ8te due to deviatiOli from regression ia given by 

S
2 _1_ 1 t 2 ( 1: x~)2 

= n-2 \ y - 1: x 2 ) 

~ (7.2)2 = -=-<J' 0.19) = 0.06 
~3 5.J7 ---) 

10 
:: 

(Iv) The null hypothesis to be tested is 

H : a = 0 
o 

The test statistic used is 
b 

0.72 
9.35 = ---0.077 

0.72 

[(i06 
~--;o 

0.72 

= ~ 0.006 

Table value of t at 5l". level with 3 df is 3.18. Since computed 
t value of 9.35 is greater than the table value, Hoi, rejected. 

Let V = 8 + b X ••••• (I) 
1 1 

and Y = a
2 

+ b
2 

X ••••• (II) 
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be two regressioo lines of Y on X for the same set of characters X 

and Y for say male (set I) and female (set II) group of fishes. To test 

the null hypothesis that populatioo regression coefficients of the two 

regression lines are the same i.e. H : I = e , the following test statistic 
a 1 2 

is used 

(111) 
: 

2 
This iS

2 
distributed as t with n, + n

2 
- 4 degrees of freedom. E)(,' 

E)(2 are corrected sums of squares as defined in '0.4.3 for 'st and 

2nd set of data. 

If S,2 and 5
2

2 
are variances about the regression line (deviations from 

regression) of the 'st and 2nd set of data based on ", and "2 observa ­
tions respectively, then~ 

2 (n,-2) 51 + (n2-2) 52
2 

5 = P n,+n2-4 

;;_K~ ~ 
The relationship between the standard length (X) and body depth (Y) 

was ·studled by linear regression for male and female fishes. The following 

dala were oblained. 

Male 

Female 

Sampfe 
size 

12 
15 

Corrected am of scplres -.d procb:U 
2 2 52 lit Y lIty b 

64 7.5 21 0.06' 0.:53 
68 9.5 24 0.080 0.35 

Test the hypothesis that population regression coefficients of both the 
regression lines are the same. 
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Answer 

The null hypothesis to be tested is, 

To test this hypothesis, the following test statistic is used 

I b , - b 2 I 
= 

It is distributed as t with n 1 + n
Z 
-4 df 

Compute, 
Z 2 

S 2 
(n,-2) S, + (n

2 
-2) S2 , OxO.061 + D)(0.080 

0.071 7 = = : 
p n, +n

2
-4 12.'5-4 

E 2 
= 64, r 2 

0.33, b
2 

= 0.35 x, x
2 

= 68, b = , 
Substituting these values, t is computed as : 

I 0.33 - 0.35 I 0.02 
= = 

~ 0.0717 
1 ~.J 0.00217 

(--+ 
64 613 

0.02 
0.4292 = = 0.0466 

The table value of t with 2J df is 2.069 at 5~ and 2.807 at 1 ~ level 
of significance. Since I t I < the table value of t at 5~ and 1 ~ level 
of significance, the null hypothesis is not rejected. 

1D.4.9 linearizing trawfcxmalion 

Both the correlation and regression tectvli~es discussed earlier are based 
on the assumption that Ilnea.r relation.ship e)(ists O8t ween the variables. 
However, there are many cales In fishenes investigation, where relation-
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ship between the variables is not linear i.e. non-linear. Some of these 

non-linear relationships can be brought to linear form, using certain 

transformations. An example of length-weicj1t relationship which can 

be transformed to the linear form is discussed .here. 

1().4.9.1 Lenglh- weiq,t relatlm:ihip 

The relationship between body weight (W) and body length (L) in fishes 

has been empirically observed to be of the form 

b 
W = al (IV) 

This equation is not in linear form. The parameters 'a' and 'b' are almost 

uni vNsally estimated by fishery workers by transforming the equation 

(IV) to logarithmic form and applying the least squares technique. Thus 

the equation actually used is, 

log W :: log a + b log l 

The above method tacitly assumes the following multiplicative error 

model: 

b 
W :: a.l e tV) 

where a and b are constants and e is a random error factor. 

Taking logarithm on both sides of tV) gives rise to 

log W :: log a + b log l + log e 

i.e. Y :: A + BX + E (VI) 

where Y :: log W, X :: log l, A :: log a, b :: B, E :: log e 

Expression (VI) is in the linear form. If it is ~ssumed that E is distributed 

normally with mean zero and variance a I then the estimate of A 

and B can be obtained by the method of lea t squares discussed earlier 

in section 10.4.1, using the formula 
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B 
1: XY - ( E X) ( E y) In 

= 
Ex

2 E X) 
2 

n 

A = Y - BX 

In the above expressions Y = log Wand X = log L, Y and denot 

means of Y and X value5 respectively. The B value ~i~ s an estimate 

of b, wher.eas conventionally, 'a' is est imated as e or exp (A). This 

method however gives biased estimate of 'a' . To camp nsate for the 

bias the 'a' value obtained is multiplied by the following correction 

factor 52 h 2 
Correction factor = e C)(P (~ ) 

Where 52 is an estimate of . variance O2 deviations 2 from reg r SSlon 

(see 10.4.3). Hence, corrected a = exp (A.~ ). 

2 
If common logarithms are used, a : Antilog (A+~2) 

10.4.9.2 Applications of length-weiljlt relatlmship 2 

(i) It Is useful In estimating weiljlt of fish for a given length. 

As length of fish can be measured more easi ly and accurately 

than weight in landing centres as well as on board the vessels 

in the sea, It is convenient to estimate weight from predeter­

mined length-weight relationships. 

(Ii) I is useful In determining cc.nditim factor 

In order to compare weight and length in a particular !>ample 

or individual, condition factors are employed. Fulton's condition 

factor (K) is calculated a~, 

K 

where W and l are the observed total weiert and length 0b 
a fish. It is the value of 'a' in length-weight relationship. W = al, 

when b = J. If the fish is heavier, at a givPn length, the larger 
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is the factor K, implying better is the condition of fish. K greater 

than 1, indicates general ~f'l' 1I being of the fish is good. Fulton's 
condition factor, is suitable for comparing differences related 
to sex, season or place of capture. Even when b differs from 
3, rutton's condition factor may be used, if fish are approximately 
of the same length. If the length range is large, the following 
formula is used: 

Alternatively, the condition factor is computed as the ratio 
of obser ved weight to estimated weight. 

-
W 

'" W 

where W is the estimated weight based on length-weight relation-
. W b shIp = aL • 

Example 5 

Total length (em) and weight (gm) recorded on a sample of 12 fish 

are given below 

5. No. 1 2 J 4 5 6 7 8 9 10 11 12 
Length 17.6 19 27.220.2 1a6 14.8 21.1 16.8 21.4 13.2 23.7 24.6 

(em) 

Weight 2S 32 110 42 30 10 45 20 48 8 75 82 
(g) 

(i) fit length- weight relationship of the type w b 
where W = aL , 

is weight and L is length of fish. 

(iI) Test whether b differs significantly from J. 
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~ 

5.No. length Wei~ X=fog l Y=fog • XV 2 x 
(em) (g) 
(l) (W) 

1. 17.6 2.5 1.2455 1.3979 1.7411 1.551) 
2. 19 32 1.2786 1 • .5052 1.9248 1.6353 
3. .27.2 110 1.4346 2.0414 2.5221 1.5265 
4. 20.2 42 1.3054 1.6232 2.1189 1.7041 
5. 18.6 30 1.2695 1.4771 1.8752 1.6116 
6. 14.8 10 1.1703 1.0000 1.1703 1.3696 
7. 21.1 45 1.3243 1.6532 2. 1893 1.7538 
8 16.8 20 1.22.53 1.3010 1.5941 1.5014 
9. 21.4 48 1.3304 1.6812 2.2367 1.7700 
10. 13.2 8 1.1206 0.9031 1.0120 1.2557 
11. 23.7 75 1.3747 1.8751 2.5777 1.8898 
12. 24.6 82 1.3909 1.9138 2.6619 1.9346 

15.4701 18.3722 24.0304 20.0341 

(I) Length-we~ relatlcnhlp 

X = 1.2892 Y = 1.5310 

1: XV -
1: X) ( 1: y) 

b = n 

1: X
2 - ( Z X) 2 

n 

24.0304 -
(15.4701) (18.3722) 

= 12 

20.0347 -
(15.4701) 2 

12 

24.0304 - 23.68.50 0.3454 ).7956 = = = 
20.037 - 19.9437 0.0910 
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A = Y - bX 

= 1.5310 - 4.8933 = - 3.3623 

Deviations from regression ", 

= ..!_ (1.3219 - 0.1193) = 0.0011 
10 0.0910 

2 
a = Antilog (A+~ ) 

.2 
= Antilog (- 3.3623 + 0.0011) = Antilog (- 3.3568) 

2 
= 0.0004. 

The length-weight relationship is therefore given by, 

W = 0.0004 L 3.7956 

(iI) "T 0 test whether the sample regression coefficient (b = .3 .·795 6 J 
comes from a population with the regresion coefficien t S = 3, 
the following null hypothesis Is set up : Ho: B = 3 

The test statistic used is, 

= 
I b - 3 I 

This is distributed as t with n-2 df. 
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= 
Deviation from regression 

= 
0.0011 
0.0910 = 

n 

0.0121 

Hence sb : ~o.0121 = 0.11 

, 3.7956 -3 I = 0. 7956 
Hence = 

0. 11 0.11 
: 7.23 

The table values of t at 5!O and 1% level of significance are 
2.228 and 3.169 respectively. As l calculated is 7. 23, which 
is more than the table values of t at both 5~ and 1 ~ level 
of significance, the null hypothesis is rejected. 

llU.l0 Applit:ations of linear regression Malysis (Ricker, 197J) 

Some situations wherein linear regression approach is of value in fisher'ies 
research are gi ven below : 

1. Conversion between different length measurements, i.e., from, 

say, total length to standard length or to fork length and so 
on. 

2. Calculation of fish len ths from scale measurements. 

3. 

4. 

5. total mortality coeffic! Z In to M, the natural 
mortality coefficient and r the fishing mortaHty coefficient 

using the regression of Z on effort f. 

6. Catch curve method of estimating instantant'ou5 total mortality 
rate making use of the relation between abundance (number> 

of filh and their corresponding age. 
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7. Schaefer's method of population analysis based on the regression 

of catch per unit of effort on effort. 

8. Relatioo of fecundity to body weitjlt using the regression of 
number 01 eggs (r) 00 body weight (W). 

9. Routi rle metabolic !ate of fishes through the regression of oxygen 
c oosumptioo quiescent of fishes (Q) 00 body weight W. 



SAMPLING METHODS 

11.1 tltroductlm 

i'I the earlier discussion on collection of data. (chapeter, 2), he 

advantages of collecting requir ed information on a sample. ~ 
part of the population were discussed. The IOformatlon 

obtained from a sample is then used to describe or estimate certain 

characteristics or parameters of the whole population. Drawing II'l ferences 

about a population based on a sample is an age old pracllce, thoucr 

the scientific approach to the problem is of recent orlgl1. A consumer 

at a provision store inspects a hand full of rice in order to form a 
conclusion about the quality of rice in the whole bag or the housewife 

tastes a spoonful of soup to draw conclusions regarding the w :"l olt~ 

quantity in the kettle. These are some examples of uses of sampling 

procedures in every day life. If uniformity exists among the units (indivI­

duals) of population, then any $am~Ie chosen will give almost the ~8me 

result. If there is a great variation among units of the population then 

a proper method of selecting the sample has to be used to draw rella Ie 

conclusions about the population. Modern statistical sampling methods 

such as the 'probability random sampling methods' gIve a definite proce­

dure for selecting a sample from a population. A distinct advantage 

of random sampling procedure is its ability to provide an estimate 

of the sampling error based on the sample itself, which forms the 

basis for ascertaining the reliability of the estimate. There are different 

methods of random sampling, and the important ones are de5Cribed 

below. 

11.2V Simple rMdom sampling 

i'I this method a sample is drawn unit by unit with equal probabillty 

of selection for every unit at each draw. Every possible sample of 

required size has the same chance of bel1g chosen in this method. 

Simple random sampling can be selected us!'g either the lottery method 

or using random number table~ which was discussed in chapter No. 2.. 
')ielection through random number tables is cawenient when the popu­

latiOn under study is large. J 
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11.2. 1 Estimatim of populatlm parameters 

O1ce the sample has been drawn, the next step is to estimate the 
population parameters based on the sample observations. The main 
parameters of interest are population mean and total. 

Let us suppose that a population of size N is being samplp-d for some 

characteristic, say, ~ Let X, , X
2 

•••• X
N 

character on N units of the popula1ion. 
be the values of the 

further, suppose that 8 sample o! n individuals is selected by simple 

random sampling 'with values x" x
2 

x
n
• The unbiased estimate 

of the population mean Is given by, 

n 

= 
n 

The variance 2' sample me~ is estimated using the formula 

Var (x) = ( .! - .! ) s 
n N 

= (N-o)l = (1 -..!])..i. 
N n N n 

2 
5 , when N is ~'Iarge as compared to n =n 

above expression, ., the 

2 - 2 
5 =!._ ( E (x-x) )Is the sample variance which 

n-1 
is the un-

biased estimate of population variance. It is clear that the variance 
of X depends upon sample size and variability present i:l the population. 

Se-d 

The estimate
2 

of ttw:_population tot .. ill : X = Nx 
Var (X) = N Var (x) 
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Fishes are landed at a certain small landing centre throughout the 

year. Twenty days were randomly selected from 365 days of Q year 

and fish landed (in tonneJ) during these days were recorded whlcn 

are given below. 

Weight in kg: 30, 42, 25, 32, 48, 32, 40, :? B, }o, 20 
18, 31, 15, 28, 25, 30, 35, 40, 22. 20 

Estimate (i) the average fish landings per day, and (ii) total fish landings 

during the year. 

Answer 

(i) Meal r~ landings per day 

30 + 42 + • • + 22 + 20 591 
: 

20 : ---w- = 29.55 

: 

: 

Var (x) : 

: 

1 .. 2 
--( L. X _ 

n-1 

E )2 
-,--_x....;.. ) 

n 

19 
(18853 - 17464.05) 

1388.95 
73.1026 : 

19 

52 n 
(1 - -) 

n N 

73.1026 
20 

20 
(1 ---m' 

= 3.4548 

Standard error of mean = 1.8587 

(S.L) 

: 3.6551 (0.9452) 
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(ii) Estimate of lotal fISh 1and"1nCJ X = NIl 

= 365 (29.55) 
: 10785.75 

Standard error of total fish landings : N x (SE of mean) 

= 365 x '.8587 
= 678.4255 

1'4.3 Stratified random sampling 

As has been mentioned in simple random sampling that the variance 

of sample ·mean depends on the size of the sample and the variability 

of the population. Therefore, the only way of increasing the precision 

of an estimate apart f arm the size of the sample is to devise ssmpling 

procedures which will effectively reduce the variability. Q,e such pro-. 

cedure known as 'st ratiJied sampling' consists of di viding the population 

'Into 'classes' or 'strata', each relatively homogenous an drawing random 

samp es of known sizes~ each from di ferent strata. Then the estimates 

are maCie""for each of the strata and combined by a proper weight age 

to obtain the estimate for the whole population. The variance of this 

estimate is obtained by combining the variances of the estimates within 

each stratum. This combined estimate of variance will be small as, within 

str.atum . variances will tend to be small as each of them come from 

relatively homogenous stratum. 

Stratified random sampling method assumes that the structure of the 

population necessary to demarcate the strata is known, which may not 

be true in many situations. F or better planning and execution of the 

survey work, stratification is some times done based on geographical 
pro..(imity. 

1 '.J.1 Estimation of mean ... variance 

If the population under study is divided into k strata with sizes N" 

N2 •• Nk respectively, then estimate of the population mean is given by 

= 
N, x, + N2 Xl + - + Nk xk = N, x, + Nl Xl + -+ Nk xk 

x 
N, + Nl - + Nk N 



x l' x2 "'\: are means of 1st, 2nd _ kth stratum 

- 1 
x = - . (E x. ) where n. is the ith stratum sample size. I n, I I 

N 2 () 2 2 

Var (X) = 
1 Var x 1 + N2 Var (x

2
) + - + Nk Var (\) 

N2 

The estimate of population total is given by 

x = Nx 

and its variance is 

Var (X) = N2 
Var (;) 

l1J.2 Allocation of sample size 

The advantage of stratified sampling can be increased by allocating 
the sample size n into various slrala in the besl proportion. rollowing 
are the important methods of allocation of samples to different strata. 

(i) ~ samples for each stratum 

The total sample size n is divided equally among all the strata, 
i.e., for the ith stratum, ni: n if there ar k strata. 

k 

(ii) Proportional allocation 

In this method the total sample size n is allocated to different 
strata in proportion to their size, i.e., for the Ith stratum, 

N. 
I 

ni : nN 

(iii) ~imun allocation 

In some cases it may be requited to conduct • MITIple survey 
' with • fixed budget, bot with varying costs of selecting the 
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sampling units from different strata. In such situations the alloca­
tion of the number of units to each stratum is done with 8 

view to minimizing the sampling variance for the given fixed 
cost or the cost of survey is minimum for the specified value 
of the sampling variance. Allocation of the sample for the ith 
stratum is given by, . 

Ni Si I G 
= n 

tNi Si / -rci 
where Ni is the size of the ith stratum, Si is the population 
standard deviation for the ith stratum, ci is the cost of obtaining 
a single observation from the ith stratum. 

(Iv) Neyman allocation 

This method of allocation is used when the cost of selecting 
the sampling unit does not differ from stratum to stratum. 

The sample size for the ith stratum is given by, 

Ni Si 
= --:---- n 

tNi Si 

This indicates that the total sample sIze n is allocated in proportion 
to Ni Si, that is, take more · individuals from the strata that are large 

and are highly variable. 

Some times it may 50 happen that the sample size ni estimated by 

Neyman allocation may be larger than the corresponding N. of the ith 
I 

stratum. Such a type of situation arises only when ovel all sampling 
fraction (~ is substantial, and one stratum is much v.ariable than 

the others. ~he procedure that can be adopted in such situations is 

outlined in Cochran (1963). . 

1'.J.3 Advantages of stratified random ~ling 

There are many advantages with stratified random sampling and the 

important ones are given below; 
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(i) Stratified random sampling gives better cross section of the 
population than simple random samplioo. 

(ii) Precision of the estimated character is ~ in 

stratified random ~ampling than in si~le random sampling. 

(iii) f or physical or administrative reasons it is easier to co llect 

the data using this sampli ng technq ue. 

In a certain state there are 250 fishing villages. It is known that in 

120 villages the 'ish landings are below 50 kg, in BO villages the landings 

are between 50 and 60 kg and in 50 vi llages the landings are above 

60 kg per boat. A random sample of 12, B and 5 villages was drawn 
respectively from the 3 groups of villages and the catches in kg per 
boat recorded in these selected villages are given below. Estimate the 

catch in kg per fishing boat with 9~ confidence limits. 

Stratum (group) 

Stratum (group) II : 
2~ 2~ 3~ 3~ 3~ 4~ · 2~ 2~ 4~ 2~ 3~ 36 
51, 52, 58, 54, 51, 55, 59, 57 

Stratum (group) III 72, 68, 61, 66, 79 

for stratum 

Mean, Xl :: 

S 2 
1 

Var (x,) 

:: 

:: 

: N 1 :: 120, n 1 :: 12 

EX:: .2!!!_ _ 32.33 
12 

(n
1
-,) 

2 
-'(-~) 

", 
-'- (13194 -12545.333) :: 58.9697 

11 .J. l.Ji 1 :: (-'- _ ~'S·~ :: (-'- _ _!_) t:I1 
n N J ( 20 120 , , \. 

= (o.os33 - Q.OO8J) 58.9697 :: (0.0745) 58.9697 :: 4J9)l 
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Stratum II: N2 = 80. "2 = 8 

Mean, 

S 2 
2 

X : 
2 

= 

= 

n -1 
2 

437 
: --8- = 54.625 

2 E ', x _ 

2 
E x) 

~____.;.~ ) 

"2 

+ (23941 - 23871.125) = 69.875 
7 

= 
1 --_ 1 5 2 

--) 2 
N2 

= 9.982 

= (_1 ___ ,_) 9.982 
8 80 

: (0.125 - 0.0125) 9.982 

= (0.1125) (9.982) = 1.123 

Stratum III : N 3 = 50, ") = 5 

E x 346 
Mean,x

3 = ---- 69.2 - -
"3 5 

2 
S 2 , ( E 2 Ex) ) 

= x 
3 n - n3 ) + (24126 - 23943.2) 

'82.8 : 45.7 = = 4 

= 
(_' _ _ _1_) 5 2 

n3 N) 3 

: (-~- - ~)45.7 = (0.2 - 0.02) 45.7 

= (0.18) (45.7) = 8.226 
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x = 
N 

11809.6 
46.8384 = = 250 

Var (X) : 
N 2 

1 
Var (x \ + 

l ' 
N 2 

2 
Var (x

2
) + N 2 

3 
Var (x 3) 

N
2 

14400 x 4.3937 + 6400 x 1.123 + 2500 x 8.226 
: 

62500 

Standard error = ~ Var x = 1.2067 
(S.L) 

Estimated tolal 

= 11709.6 

The 9:tO confidence limits for mean are, 

X :t 1.96 S.L of mean 

= 46.8384 :!: 1.96 x 1.2067 
= 46.8384 + 2.3651 

The confidence interval is (44.4733, 49.2035) 

11.4 Systematic sample 

: 1.4562 

The method of samplirY,;l in which only the first 'unit is selected at random 

a~ the rest being selected according to a predetermined pattern is 
known as 'systematic samplirY,;l'. Suppose that a population consists of 
N units, serially numbered from 1 to N and a sample of n is desired to 

be drawn from it. further, let it be possible to express N as N = nk, 

k being an integer (i.e., N is an integral multiple of k). This k : ~, is 
n 

called the sampling interval and the sample drawn with this interval 
is called a 1 in k sample. Drawing a systematic sample consists of select­

i~ a unit at random from the first k units and then selecting every 
k unit in the population thereafter. for example. suppose we have 

a population of size N = 6~ anct it is required to draw a sample of 
size n = 5. In this cas" Ie = -: ....Q. : 12. Hence, this is 1 in 12 sample. 

n 5 
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. Therefore, draw a unit at random from the first 12 units. Suppose this 

turns out to be the 8th unit, then the sample consists of the 8th urit 

and every 1·2th unit thereafter, i.e.. units with serial number 8, 20, 
32, 44 and 56, constitute a sample. 

When N :: nk, the sample mean of a systematic sample selected with 
the above procedure provides an urbiased estimate of the population 

mean. However, when N ~ nk the mean of a sample selected with the 
above procedure, gives a biased estimate of the popuiation mean. If 

n > 50 the bias is negligible and can be ignored. An alternative method 

of drawing a sample when N ~ nk, which gives urbiased estimate of 
the population mean, is also available. For details readers may refer 
to Cochran (1963). 

11..4. 1 Estimation of population mean and population total 

When N :: nk, as mentioned earlier, sample mean provides an urbiased 
estimate of the population mean. Sample mean is given by 

x = 

An approximate and biased estimate of variance of X is given by 

n-1 
2 

Var (x) :: 
N - n E (x . +1'- Xi) 2Nn (n-1 ) i:: 1 I 

(k 1 ) 
n-1 

x/ 
- 1: (x. :: 

2nk (n - 1) i=1 + , I I 

The estimate of population total is given by 

x :: Nx 

and its variance estimate is 

N
2 

(k-l) 
n-1 

2 
Var (X):: 1: (x . - x ) 

2nk (n-1) i::1 I + , i 

If the arrangement of the units in the population is rlWldom, then 

- 2 
Var (x) :: ~ (1~) 

n N 



161 

11.4.2 Advantages 

(i) Easy to draw samples and requires less time. Hence it is opera­

tionally convenient to execute the survey. 

(ii) Sample is spread out more evenly over the population. 

(iii) It is likely to be more precise than simple random sampling for 
many populations. 

This sampling procedure has been successfully employed in forest surveys, 
in fish catch estimation surveys, in milk yield surveys, etc. SystematiC 

sampling is widely used with other sampling methods such as stratified 

random sampling, cluster sampling, etc. For instance, In estimating the 
total marine fish catches of our country, systematic sampling is used 

with stratified multistage random sampling. 

11.4.3 Disadvantages 

0) There is no reliable method for estimating the varience of mean 

of a systematic sample from the sample data. 

(ii) Systematic sampling has to be used carefully when there is a 
periodicity in the population, as its efficiency depends upon 

the Choice of the sampling interval. 

Ex....,le 3 

At a particular landing centre, data on fish landings were recorded during 
8 month (of 30 days) on 10 days selected by systematic sample with 

8 sampling interval of 3 days. Below are given the landings (in tons) 

of the 10 sampled days. 



Day 
landing(t) 3.5 

2 
4.5 
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3 4 5 
3.2 3 4.2 

6 7 
4 3.5 

8 9 
5 4 

10 
3.3 

Total 

38.2 
Give an estimate of the total fish landings of the centre for the month 
and also an approximate standard error. 

Given N = 30, k = 3, n = 10. An estimate of the total landings is given 
by 

X=Nx = N 30 
~ Xi = 7 38•2) 

n-1 
N

2 
(k-1) ,E 

1=1 

= 114.60 

Var V (X) = = 27.3333 
2nk(n-1 ) 

Standard error of the estimate X = JVar(>Q = J 27.3333 = 5.23 

11.5 Cluster sampling 

If the basic, sampling unit in a population is to be found in groups or 
clusters, then from the operational point of view the sampling may 

be carri~d out by selecting a sample of clusters and observing all the 
units of each selected cluster. This type of sampling is known as 

-cluster sampling. 

It is less costly than simple random sampling. ~owever, cluster sampling 

is less efficient than simple random sampling due to the fact that individul 

units within a cluster tend to be similar. Efficiency of cluster sampling 

can be increased by increasing the size of the sample. n many situations, 

if costs less to take considerably larger cluster samples than to take 

smaller simple random samples with the same precision. Hence, it is 

generally expected that efficiency per unit cost will be more in cluster 

sampling than in simple random sampling. 

10.5.1 Estimation of population mean 

Let N and n denote respectively the rumber of clusters in the population 

and in the sample respectively. Let Mi denote rurrber of units in the 
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ith cluster. For simplicity consider the case of equal clusters, i.e. MI = M 
for all i. Then an unbiased estimate of the population mean is given 

by 

x = 
n 

n \ 
E 
i=' 

X. = 
, 
M 

E x is the mean of ith cluster. 
I ii 

Estimate of the lIariance of x is gillen by 

(.2. __ 1_) (_'_) 
n 

- 2 
Var (x) : E (x . - x) 

n N n-l 1=1 J 

Estimate of the population total is : 

X : N x 

and Var (X) = N2 
Var (x) 

For details regarding estimation of population parameters when clusters 

are of unequal size, and selection is with replacement and unequal 

probability, readers may refer to Sukhatme (1954). 

Example 4 

F or recording catC'h data of a marine landing centre a calendar month 

of 30 days was dillided ' into 15 clusters of 2 consecutille days each 

and 7 clusters were randomly selected from these 15 clusters. The 
catch (in tons) data for the selected clusters are gillen below. 

Catch (t) 
Cluster No. 

1st day 

2nd day 

1 

6 
8 

! 
7 

6.2 

3 
6.5 
8.3 

4 5 
B.2 7.4 

10 B.O 

6 7 

6.6 8.5 
8.8 7.1 

(i) Estimate the average catch per day for the landing centre 
a10ngwith Its standard error. 

(ii) EJtimate the total catch for the landing centre during the 

month. 



Answer 

Cluster 

1 

2 
3 
4 

5 
6 
7 

Total 

(i) 
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Catch (t) 

1st day 2nd day mean (xi) 

6 B 7.0 
7 6.2 6.6 
6.5 B.3 7.4 
B.2 10.0 9.1 
7.4 B.O 7.7 
6.6 B.B 7.7 
B.5 7.' 7.B 

53.3 

n 
Average catch per day x = =~ = 

7 
7.6143 

Var (x) 
(_, ___ 1_) 

n N n-' 
( E - .2 · -2) 

x I - nx 

= (+ ,+-) + (409.55 - 405.B432) 

= <_1_ _ ....2.._) (3.706B) 
7 15 6 

:: (0.0762) (0.6178) = 0.0471 

St andard er ror = v' Var (X) 

= 0.217 

(iI) Estimate of the total catch during the month 
= (number of days of the month) x (average catch per day) 

= 30 x 7.6143 
= 228.429 tons 
Standard error of the total catch, 

= 30 x 0.217 
= 6.51 
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11.6 ~ or two stage sampling 

A sampling method in wh ich the sample is selected in stages, is called 

subsampling. In this method, the sampling units at each stage are sub­

sampled from tht units chosen at the previous st age. The first stage 

(primary) units are selected from the population. From each of these 

selected first stage units, the second stage units are selected. As the 

sample is taken in two stages subsampling is some times called two 

stage sampling. F or instance, in estimating the total marine catches 

along the coastline of a certain state, certain landing centres (first 

stage unit s) on certain days are selected at random. Then from these 

selected landing centres, some boats landing the catches (second stage 

units) are selected for recor ding the catch data. 

Sample can of course be selected in more than two stages in which 

it is called multistage sampling. F or instance in the above example, 
if It was decided to record the length of fishes also, then the sample 

fishes (say 200 fish) can be taken from each selected boat. In this 

example, the sample is taken in 3 stages and hence called 3 stage 

or multistage sampling. 

Usually individuals within the same primary unit are likely to resemble 

each other. Hence more number of primary units may be selected with 

few individuals from each. 

11.6.1 Estimation of population mean (Equal first stage lnits) 

Let the population be composed of NM elements grouped in to N first 

stage units of M second stage units each. Let n denote the number 

of first-stage units ' in the sample and m the number of second stage 

units selected from each selected first -stage units. 

The estimate of the mean of any sampled first stage unit is given by 

m 

)(i = "!_r x, 
m i=1 II 

where x .. is the value of 
II 

the jth individual in the Ith first-stage unit. 
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The estimate of the population mean is given by 
n 

)( = _1_1:~ 
n 1=1 . 

Estimate of variance of sample mean is given by 

Var (x) 
1 

-'-> 2 1 <_' ___ 1_> = (-- Sb + n N N m M 
n 

_)2 
where lib 

2 r=1 (x. - x 
= I 

n-1 

- 2 
n 

2 
II = 1: s. 
w n i= 1 I 

m 
1: - 2 
I' 

(x .. - xi) .= I, = 
m-1 

-
s 
w 

when (N-n)/N and ~M-m)/M can be taken as unity, then 
2 

var (x) = sb 

n 

when (M-m)/M alone can be taken as unity, then 

var (X) = <-'- _ -'-> 
n N 

2 1 - 2 
s + -- S 
b Nm w 

2 

f or details regarding estimation of population mean, when the fi rst 
stage units are unequal, readers may refer to Sukhatme (1954). 

11.6.2 Advriagee 

The main advantages of subsampllng are 

(I) Only the unIts of the population selected at any stage need , 
be listed for sampling at the next stage, I.e., complete list. 
at UDit.s of the population il not needed 
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(ii) This sampling method allows for the use of different selecUm 

procedures at different stages. 

It is because of this flexibility mUltistage sampling procedure 

is most commmly used in large sample surveys. f or example, 

in estimating ttle marine fish catches, we use a multistage 

design in stratified random sampling with systematic selection 

of days in a month. 

(iii) Reduction in cost and ease of administration in the surlley 

work. 

Example 5 

four boats were selected randomly from the lOa boats that landed 

the catch on a given day in a landing centre and 20 mackerel from each 

selected boat were taken for recording length measurement s. The follow­

ing data were obtained. 

Boat 1 
Length (cm) 

Boat 2 

Boat :3 

Boat 4 

18, 
21, 
16.5, 

20, 

20, 
16, 
16.5, 

18, 

15, 
12.5, 
17, 
16, 

17, 
20, 
17.5, 
19, 

17.5, 

18, 
16, 
18.5, 

18.5, 
15, 
21, 
20, 

17, 
12, 
16, 
12, 

18.5, 
14.5, 
18, 
16.5, 

20, 19, 18.5, 

14.5, 20, 15, 

14, 17, 19, 

15, 17, 20, 

20.5, 19, 18. 

18.5, 20, 20.5, 

18.5, 19, 20, 

17, . 20.5. 18, 

18, 18.5, 20, 

14.5, 15, 16, 

19.5, 14, 18, 

17.5, 18, 18, 

21, 20.5, 19, 

19, 20, 17, 

22, 16, 18, 

19, ' 17, 20 
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Estimate the· mean length c~ mackerel during the day's landings, and 

Its standard error. 

Let X Ii denote the length, n the number of 1st stage units in the sample 
and m the number of second stage units sampled from each selected 

first stage unit. 

Bolt 

rl: xii 

EI: 2.-x I 

Mean,:"Xi 

VarfWlCe, si 
Z 

1 

354.5 

6364.Z5 

17.725 

= 4.Z494 

2 

374.5 

7064.75 

18.725 

Z.7493 

Given, n = 4, m = ZO 

Mean length, x 

x: E J. 
= = n 

Variance between boats is given by, 
4 
E f~-;} = n-1 1=1 -"]. 

= 1.26S6 

= 
_

1..;.;:5..:;.;;.9..:;.97.:.:3~ 
n 4 

71.1:; 

4 

= 3.9993 

3 

324.5 

5371.Z5 

16.ZZ5 

5.5913 

= 18.7875 

4 

369.5 

6891.Z503 

18.475 

3.4073 

Varlllnce of sample mean (i), when the number of 2nd stage units 
In the population ia large relative to the 2nd stage units in the sample, 
it given by _- . 
Var (x) = 1 1 

(~- ?) 
Z 

S +-­
b Nm 

: 0.2400 x 1 •. 26S6 + o.ooZO 
: 0.30)7 + 0.0020 
: 0.3057 

Stanct.d errot ~ .. man (;) 
; I0.l057 z 0.5529 
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11.1 SIwnpIIng desicp to estimate total marine rl!h IInIngI 

Our country has a long coast line of about 7515 km and there are 
about 1400 landing centres scattered along the coast. The sampling 
design developed and practiced by the Central Marine fisheries Research 
Institute (CMFRI) provides the estimate of total marine fish landings 
for ' the entire nation. The sampling design adopted for the purpose 
is 'stratified multistage random sampling' the stratification being over 
space and time. Each maritime state is divided Into several zones on 
the basis of geographical consideration and fishing practices. 

11.1.1 Sampling'or rarst atage ...ut! 

Nine landing centres are selected at random from each zone for recording 
fish landings. A month is divided into 3 groups of 10 consecutive days. 
F rom the first ten days group, a day is selected randomly such that 
it falls within the first five days. Then 6 consecutive days from the 
selectee day onwards are considered and these 6 days are group d 
into 3 clusters of 2 consecutive days each. From the 2nd and led 
group of 10 days, 3 clusters of two days each are chosen systematically 
with a sampling interval of 10 days. To illustrate, suppose that the 
4th date (day) was selected from the group of first 10 days. Then 
6 consecutive days from the selected day will be 4, 5, 6, 7, 8, 9 and 
these days are grouped into 3 clusters of 2 consecutive days, i.e., 
dates 4 and 5 will form one cluster, while 6 and 7 and 8 and 9 will 
form the other two clusters. From the 2nd group of 10 days, 6 days 
are systematically selected with a sampling interval of 10 days from 
the first date selected from the group of first ten days. Thus 6 days 
In the 2nd group will be 14, 15, 16, 17, 18 and 19 forming 3 clusters 
of dates 14 and 15, 16 and 17 and 18 and 19. rrom the 3rd group. 
6 days are selected ' with the sampling interval of 10 days from the 
first day selected in the 2nd group, I.e., the dates will be 24, 25, 26, 
27, 28 and 29 whose clusters .re 24 and 2'>, 26 and 27, 28 and 29. 
Thus there are 9 clusters of two days each in a month. These 9 clusters 
are allotted to the 9 selected landing centres. On the first day of 
observation data are collected from 12 to 18 hours and the next day 
6 to 12 hours. The data on night landings are collected by enquiry 
covering the period from 18 hours of the first day to 6 hours of the 
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next day. Thus a 24 hour period Is covered for a landing centre. This 
forms the landing centre day and Is the first stage sampling unit. 

11.7.2 Sampling for tIeCOnd Itage units 

On the day of observation at the selected, landing centre, if the total 
number of fishing units that land their catches is 10 or less, then, 
the data on all the units is collected. If the number of fishing units 
exceeds 10, a sample of boats is selected in a predetermined manner. 
Thus fishing units form the 2nd stage units on which dllta on species 
wise catch, effort, craft, and gear etc., are recorded. 

11.7.3 Sampling for Jrd stage ..... ils 

At the Jrd stage, samples of commercially jmportant species are taken 
from the selected second stage units for biological observations. 

11;7.4 Estimation of lotal landings 

Based on the data collected from the selected fishing units, the total 
landings for the landing centre day are estimated. From these the monthly 
estimates for each year on a lonal, district and state basis are worked 
out together with the corrosponding sampling errors. 

11.8, £stimatlon of nIa1d fish catch 

As there is no standardised sampling tecl'vlique for estimation of inland 
fish catch, the estimates at state level are computed based on various 

considerations ' such as, market @_riivals, water area leased, lease value 
etc., differing from state to state. Some studies, hav~. been carried 

,,~tll;~dian Statistical nstitute (1960-61, 1963) and by National Sample 
Survey Organisation (1962-63, 1973-n) to evolve suitable sampling 
methodology for estimation of inland fish catch, but without much 
success. Method of estimation of estuarine fish catch fOr Hooghly System 
and Mahanadi has been worked out by Central nland Fisheries Research 
nstitute (CIrRI), Barrackpore (Pillay and Gosh, 1962, Shetty and Gosh, 
1963). n a 'recent attempt (1984) by ClrR~ Barrackpore and~ 
New Delhi, a sampling design for estimation of fishery resources .xl 
catch has been suggested. 
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Chapter 12 

BASIC EXPERIMENTAL DESIGNS 

12. 1 Introduction 

Controlled experimentation is an important technique for collection 

of reliable data in aquaculture. In any controlled experiment, howeller 

meticulously planned, the response obserllations are affected not only 

by the action of treatments but also by some extraneous faclers. In 

order to oblain reliable estimates of treatm.mt effects and to draw 

lIalid inferences from experimentsl the effect of extraneous faclors 

has to be quantified and segregated from resl of the effects due to 

treatments. This can only be accomplished by designing the experiments 

suitably. Selleral designs are available in statistical literature to aid 

in proper planning and designing of experiments. Basic experimental 

designs useful in aquaculture experiments are described in this chapter. 

12..2 Terminology 

The terms which are frequentl y used in experimental designs are gillen 
below. 

12.2.1 Experiment 

IVy experiment is a planned enquiry to obtain new facts or to confirm 

or to deny the facts established earlier. 

12.2..2 T realment 

The object of comparison is termed as treatment. r or example, treatments 

may be different stocking rates, feeds, fish speCies, etc. 

12..2J Experimental .... 

An experimental unit is the unit of material to which • treatment 

is applied. For example, the experimental unit may be a pond, 8 fish;. 

en animel, a piece of land, etc. 
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12..2A Experimental error 

Experimental error is a measure of variation that exists among the 
experimental units treated alike. There are two main sources of exper i­
mental 'error. 

(I) inherent variability in the experimental material (unit) to which 
treatments are applied. 

(ii) variability due to lack of uniformity in the physical conduct 
of experiment or in other words, failure to standardise the 
experimental technique. 

Experimental error provides a basis for the confidence to be placed 
in the results obtained from the experiment. Therefore, it is necessary 
to control the experimental error. Replication and local control, which 
will be discussed later, under the principles of experimental design, 
are helpful in reducing the experimental error. 

12.} Basic principles of experimental desi~ 

The three basic principles of experimental design are (,) Randomization 
(2) Replication and (}) Local control. These } principles are the minimum 

requirements for any valid experimental design. 

12J.1 RlWldomIzallon 

Allocation of treatments to various experimental units by a random 
process Is called randomization. Thus randomization ensures that all 
the experimental units have an equal chance of receiving, a particular 

treatment. Its function is to provide unbiased estimates of treatment 

means and experimental error. 

12.3.2 Replication 

Repetition of the treatment under investigation is known as replication. 
Its function is to provide an eslimate of experimental error and to 
improve the precision of the treatment effects .,d hence of the ellperi­
menl. A minimum of 2 replicatianl are required to estimate the 
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experimental error. As the precision of the experiment Increases with 

the increase in the number of replication, maximum number of repllcatlona 
(feasible) should always be tried. 

12.JJ Local cmtrol 

Local control is a device of grouping experimental units into groups 

of relatively homogeneous units. Local control helps in reducing the 
experimental error. 

12.4 Experimental designs 

The number and nature of the treatments proposed to be included in 

the experiment help in selecting the appropriate experimental design. 

Commonly used designs are given below. 

12.4.1 Completely randomized desic;pl (CRD) 

This is the simplest of all designs which uses two principles of experi­

mental designs, namely, replication and randomization. In this design 

each treatment is applied randomly lo a few experimental ponds or 

units. It is not necessary that the number of replications for each treat­
ment be the same. However, to estimate the treatment effecls with 

equal precision It is better to have each treatment replicated equally. 
This design is suitable only when the experimental units receiving tre t­

menta are homogeneous (e.g., cement cisterns). Hence, the design is 

mostly used in laborato~y experiments. 

12.4.1.1 Lay(X,ll of the desic;pl 

1he term layout refers to the placement of treatments on the experi­

mental units. Suppose it is planned to compare 4 treatments A. B, C and 
0, with 5 replicates of each treatment. Then 20 experimental units 

are required. These experimental units a[e then numbered from 1 to 20. 
Draw 5 numbers which are less than 20, using random number tables 
Or by drawing lots. They may tum out to be, say, 8, 19, 7, 12, and 3. 
The experimental units bearing these numbers will recei~e sa)" trellt­

irientA. 
'. 



The second set of 5 random numbers to which say treatment B 

will be applied Is drewn, ' which moy turn out to be' say, 1,4,13, 

18 and 20. The third set of 5 random numbers Is drawn which may 

turn out to be 9,15,17,6 and 14 and the experimental units bear­

I,ng these nunbars' receive say treatment C. Treatment 0 Is applied 

to the rema Inlog 5 experimental unlts,One of the possible .:tltyouts 

of the deSign Is shown in Figure 1. 

'e Zo J
A .4'8 

50 6C 7A 8A 

9
C 1°0 "0 1Z

A 

"e '4C '5C 
16

0 

17 ' c 18
e 

19A ZOe 

rig. 1. layout of completely randomized desll)"l 

12.4.1.2 AnaI)'Iia 

, 'th t tment from ',th replication Let x denote the observ!ltaon on the I rea " 
II t I - 1 z.... ri). for analysis of thiS deSlI)"l. the (I = '. Z • ••• - • 

following additive model is used : 

= 

where m Is the general mean 

a Is the effect due to ith treatment 
i 

e, Is experimental error which , i~2 Independently 
II with. me... zero and variance : l- 0 

normally distributed 
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Null hypothesis to be tested is, 

H 
a 

There is no difference among treatment effects 

Analysis of variance technique is used to test this hypothesis. 

Tabulate the data collected from an experiment as shown in Table 1. 

Table 1. Data from a completely randomized desi~ 

Treatments (bserved yjeld from experimental lilJts Total 

(A) x
11 

x
12 x" 

x
14 

x
15 T1 

(B) 2 x
21 

x
22 

x
23 

x
24 

x
25 

T
Z 

(C) 3 x
31 

x
32 x33 x

34 x35 T3 

(0' 4 X
41 

x
42 

x
43 

x
44 

x
45 T4 

The following computations are required : 

I. Correction factor (cr) = 
_j_g]_2 

n 

Where G is the grand total of all the · observations and 'n' 
is the total number of observations, i.e., n = rt where 'r' Is 
number of replications and 't' is the number of treatments. 

II. Total sum of square (TSS) 

= Sum Qj squar~s of all observa~ions - ff 
= ( )( 11 + )( 12 + ••••• x 44 • )( 45) - cr 

2 = 1:1: x u - cr 
II 
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III. Treatment sum of squares (TRSS) 

(when the number of replications is the same for each treatment) 

= T2, + T22 + T2 :3 + T24 - CF 

= 

Treatment 

is different 

TR55 = 

- cr 

sum of squares when the number 
for each treatment is given by, 

T2 T2 T2 T2 
1 + 2 + 3 + 4 cr 

of replications 

where T l' T 2' T 3 and T 4 a,re yield totals for the 1st, 2nd, 
3rd and 4th treatments respectively. 

IV. Error sum of squares (ES5) 

= T55 - TR55 
= II - III 

These computations can be summarized in the form of analysis of 

varianctl (ANOVA) table. The ANOVA for CRO with 't' treatments and 

'r' replications is given below: 

SCllU5e of df Sum of 5q!.Jares Mean square (MS) r 
variation (55) 55 

::: --
df 

TR55 
TR5S 

M1 Treatments t-1 ----
r-1 

F(cal) = M, 

t( r -1) 
E55 

E E Error E55 
t(r-1) = 

Total rt -1 T55 
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To test the hypothesis Ho, F(cal) has to be compared with the table 
value of F with (t-1) and t(r-1) df., at a desired level of significance, 
generally at 5~ and 1!!O levels of significance. 

!f F(cal) > F table reject Ho 

When F(cal) '> F table F value is said to be significant. If It is signifi ­

cant at 5:1;, one asterisk is put on F value, whereas if it is significant 

at 1 % two asterisks are put. When Ho is rejec ted, the treatment means 

;that differ significantly may be found out. This is done by computing 

the critical difference (CD). The formula for computing CD when the 

number of replications is the same for each treatment is given by, 

CD = (J -7-L)t 
The value of t is obtained from the t-tables at 5% level of significance 

with the error degrees of freedom. 

If the number of replications is not the same for each treatment then 

CD for comparing two treatments which have been replicated ri and 
rj times is given by, 

~ (-'- of" -'-) E 
r
i 

r
l 

'2.4.1 J Advantages and disadvriages 

The main advantages are 

(i) The design is very flexible and can be used for any number 

of replications. Replications can vary bet ween the treatments. 

(ii) The design allows the maximum number of degrees of freedom 
for error (the precision of small experiments increases with 
error degrees of freedom). 

(Ill) The statiltic81 analysis is simple. 
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(iv) Unequal number of replications for the various treatments 
doe.s not affect the simplicity of the statistical analysis. 

The main disadllantage'of the design is that it is usually suitable only 
for small number of treatments and for ho~ogeneous experimental 
material. 

Example 1 

F ille test diets were tested against the growth performance of a certain 
fish in plastic pC"ols for a period of 1 month. The daily feed provided 
was 50% of the total weight of 40 fry kept in each plastic pool. The 
experimental design used was completely randomized design and each 
treatment was replicated 4 times. 

Growth performance is gillen below 

Treatments Net "gain in weicjlt (g)/fish Total 
(lest diels) Rep. 1 Rep. Z Rep. 3 Rep. 0\ 

A 0.95 0.85 0.85 0.90 3.55 
B 0.43 0.45 0.40 0.42 1.70 
B 0.70 0.90 0.75 0.70 3.05 
0 1.00 0.95 0.90 0.90 3.75 
E 0.90 1.00 0.95 0.95 3.80 

Grand Total 15.85 

Ho There is no significant difference among treatment 

I. 
(15.85)2 

Correction factor (Cn = -:";";;":';Z:'::O~ 

II. Total sum of squares (TSS) 

= 12.5611 

= (0.95)2 + (0.85)2 +-_.~0.95)Z + (0.95)2 Cf 

= 13.3713 - 12.5611 = 0.8102 

Mean 

0.89 
0.43 
0.76 
0.94 
0.95 

means. 
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m. Treatment sum of squares (TRSS) 

= (3.55)2 + (1.70)2 + (3.05)2 + (3.75)2 + (3.80)2 - cr 
4 

= 13.3244 - 12.561' = 0.7633 
IV. Error sum of squares (ESS) = TSS - TRSS = 0.0469. 

These computations can be summarized in the form of analysis of 
variance table given below. 

Source of variation d.f. 55 ...s r 

Treatments 4 0.7633 0.19080 
0.1900 •• 

r= -- =615484 
0.0031 • 

Error 15 0.0469 0.0031 =E 

Total 19 0.8102 

rrom r table it is found that F with, 4 and 15 df 
= 3.06 at 5~ 
= 4.89 at 1~ level of significance. 

F' value is significant at 1 ~ as F(cal) > 4.89. Hence. the hypothesis 
is reiected and the conclusion is that the mean gain in weic;tlt for 
the test diets differed significantly. It will be of interest to know which 
of the treatment means differs significantly. Compute CO using the 

formula, 

CD = ( J¥'"") t 

=!< =;=- \O.~031) ) 2.131 

= 0.08 

Arrange the treatment means in the descending or 

Treatment (Test diet) 

Me... gain In weight 

E 

0.95 

o 
0.94 

A 

o.s9 

C B 

0.76 Q.43 
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The treatments which do not differ have been joined by a line. In 
this experiment treatment means of E, 0 and A do not differ by more 
than 0.08 (CD value). Hence they have been joined by a line. But 

the difference between treatment means E and C, 0 and C and A 
and C is more than the CD values, indicating that treatment C differs 
from E, D and A. Similar interpretation holds good for the other treat­

ments also. 

Conclusions 

Test diet E recorded maximum net gain in weight (0.95 g/fish) and the 
minimum gain (0.43 g/fish) was recorced by test diet B. The effect 

of diet E on growth performance was on par with the effect of diets 
D and A and these 3 diets were significantly superior to C and B. 

, Z.A.2 Randomised complete block desi<.Jl 

The completely randomized design, discussed earlier is suitable only 
when all the experimental units (e.g. ponds) are homogeneous, which 

is difficult to ensure in many cases. However, it may be po~sible to 
get a group (block) of homogeneous units (e.g. ponds in a row or 

ponds of similar siTe etc.). After grouping the experimental units in 

to homogeneous blocks, the treatments are allocated randomly to the 

experimental units within the block such that each treatment appears 

once in each block. The number of experimental units in ea.::h block 

equals the number of treatments. Such type of experimental plan is 
called 'Randomised complete Block Design (RBD)'. In this design ~r!sh 

randomi7ation is needed for each block, i.e., randomization is restricted 
to a block. Thi~ is the difference between RBD and eRD. 

The design is more suitable whe!' there is one source of variability 
as It can be controlled by suitable blocking. F or instance the design 
is particularly useful if soil fertility varies in one direction. 

The blocks or replications do not necessarily mean blocks in fields/farms. 

In fish feeding experiments for instance, blocks may be madt': up of 

fish of the same age or weighl or some other factor. RBD can be 
used In experiments for comparing the effiCiency of different feeds, 
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effect of stocking densities, different doses of fer tiliser, water level, 

etc.. on fish yield or on any other character of interest. .Thls design 
is lIery popular in agricultural field experiments.. 

12.A.Z.1 Layout of the desiq'l 

To illustrate the layout of the RSO consider an experiment 

in whi.:h 4 feeds, A, a, C, and 0 are to be compared for the growth 

of a major carp from the stage the fry are going to be stocked in 

stocking ponds. If it is decided to use 5 replications, then there have 

to be 5 blocks each containing 4 stocking ponds. These ponds are num­

bered from , to 4 in each block. For randomizing treatments in block I, 

numbers less than or equal to 4 are randomly drawn from random number 

tables or by drawing lots.. If the numbers drawn appear in the following 

order 3, " 2, 4 then allot treatment A to pond number J, S to pond 

number " C to pond number 2 and 0 to pond number 4. Llkewise 
treatments can be randomized within block numbers II, iii, IV and V 
by . drawing fresh set of 4 numbers randomly for each block separately. 

Layout of the design is given in figure 2, which is one of the many 

possible layouts. 

alock 

I 

II 

III 

IV 

v 

'a 

'0 

\ 

'S 

'C 

Fig. 2 

2C 3
A 40 

2p., J
C 4a 

20 3
S 4C 

2C JA 40 

2A 3
0 48 

-

A layout of the randomlsed complete block 

design. 
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Let x" denote the observation on the ith treatment (i = 1, 2 ••• t) 

In th~1 Ith replication (j = 1, 2 r). The following additive model 

Is assumed 

x .. I, = m + 8 . + b . + e .. 
I I I, 

where m is the general mean 

s. is the effect due to ith treatment 

b' is the effect due to jth block 

e! . is experimentsl errol which is assumed to be independently 

a'~d normally distributed with mean zero and varisnce IJ1 Z. 

The null hypothesis to be tested is, 

Ho There is no difference among treatment effects 

Analysis of variance technique is used to test this hypothesis. 

The dats colJected~uearranged in the following form: 

Treatments 

A 

B 

C 

o 

Tot.1 

x 11 
xZ1 

)(3' 

)(41 

R, 

U 

x
12 

)(22 

)(32 

)(42 

R2 

Replications 
UI IV 

x13 x'4 

)(23 )(24 

x33 )(34 
x43 )(44 

R) R4 

V 

x
15 

x
25 

x35 
x

45 

R5 

Total 

T 
1 

T 2 

T 3 

T4 

G , 
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Compute, 

I. Correction factor (Cn = 
n 

where G is the grand total of all the observations n = rt is 

the total number of observations. 

II. Total sum of squares (TSS) 
= sum of squares of all observations - Cf 

2 2 2 2 
: (x

11 
+X12 + •••. +x

44
+x

4S
)-Cf 

= 
. z 
x 

ij 
Cf 

ilL Replication sum of squares (RSS) 
2 2 Z Z Z 

R, + R2 + RJ + R4 + R5 - Cf 
:--~--~----~--~----~ 

number of treatments 
Z 

= r!3!.. - CF 
t 

where R" R
Z
' R~, R4 and R5 totals of 1st, 2nd, }rd, 4th and 5th 

replications resl)Bctlvely, t is the number of treatments. 

IV. Treatment sum of squares (TRSS) 

= T Z T 2 + T 2 T 2 _ Cf 
, + 2 J + 4 

~mber of replications 

Z = 1: ...!L - CF, 
r 

where T" T t T J and T 4 are tdt..asof the 1St, 2nd, }rd and 4th treat­
ments respectively and r is the number of replications. 

V. Error sum of squares (ESS) 

= T55 - (RSS + TRSS) 

= II - (Ill + IV) 



184 

These computatiens can be summarised in the form of ANOVA table. 

Source of df 55 MS r 
variation 

Replications r-1 R55 
R55 M --- M1 nCal) = Z 
r-1 

E 

Treatments t-1 TR55 
TR55 

MZ = t-1 

Error (r-1)(t-1) [55 
E55 

E 
(r-1) (t-1) = 

Total . n-1 T55 

F or testing the hypothesiS, the value of F(Cal) has to be compared 
with the table value of F with (t-1) and (r-1) (t-1) df ' at a desired 

level of significance. 

If F(cal) > F table, reject Ho 

When Ho is rejected, it may be of interest to know which of the 
treatment effects differ significantly. This is done by calculating CD 

using the formula, 

CD = 

The value of t Is obtained from t tables at 5~ level of significance 

with error degrees of freedom. 

The treatments for whiCh the means differ by CD value or more will 
be considered as differing significantly. 



The main advantages are, 

(i) Design is more accurate than CRD for most types of experI­

mental work as variation due to blocks can be eliminated from 
experimental error, thereby reducing the error. 

"(Ii) Design is fle xible as no restrictions are placed on the 

number of treatments or on the number of replicalions in an 
experiment. 

(iii ) ThE! statistical analysia is simple. 

The main disadvantage of the design is that it is not suitable (or experi­

ments with large number of treatments since the bl ocks become too 

larger and lose their homogenity • 

. 
Example 2 

To study the e11ect of stocking density on a certain fish species, an 

experiment was conducted with 6 different stocking densities (treatments) 

of fingerlings in ponds of size 0.02 ha using randomized block design 
with 4 replications. All cultural practices except the stocking densities 

were kept the same. Harvesting was done after 6 months of stocking. 

The yield t/ha for different stocking densities is given below. nnd 
out whether there is signifl:::ant difference among yields obtained at 

differe.nt stocking densities. 

Stocking Densities Replications 
(per hectare) RI R U Rill R IV Total 

20,000 3.6 2.B 3.0 4.0 13.4 

30,000 4.8 4.2 4.0 5.6 1(1.6 

40,000 6.0 5.7 5.2 6.2 23.1 

50,000 6.6 6.4 5.4 6.5 25.9 

60,000 7.0 6.5 5.9 7.IJ 26.4 

70,000 7.1 6.8 6.0 7.2 27.1 

35.1 32.4 29.5 36.5 133.5 
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Ho : There is no silJf' ificant difference among treatment effects. 

I. 

II. 

Ill. 

IV. 

V. 

following t:omputat lms are required to test the hypothesis. 

CF 

TSS 

(1335)2 
= 742.5938 = 24 

= , (3.6)2 2 2 2 + (2.8) + •••• + (6) + (7.2) 
= 783.29 - CF 
= 40.6962 

(35.1)2 + (32.4)2 + (29.5)2 + 06 • .5)2 - CF 

6 

= 747.3783 - CF 
= 4.7845 

2 2 2 
(13.4) + (18.6) + •••• + (27.1) - CF 

TRSS = 
4 

[55 

= 

= 

= 
= 

3110.51 _ CF 
4 

35.0337 

TSS - (RSS + TRSS) 
40.6962 - (4.784.5 + 35.0337) 

= 0.878 

- CF 

These computations can be summarized in the form of ANOVA t able 

given below: 

Sourt'e of variatim eLf. 55 f 

Replicatim :5 4.7845 1.5948 

T~eatments 5 35.0337 7.0067 F(cal) = 119.77** 
Error 1.5 0.870 0.0.585-

Total 23 40.6962 

- SilTlific8nt at 11 
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2.90 at 5~ level of slgnlflcW"lce 
4.56 at , ~ level of signiflcW"lce 

The calculated value of F is significant at 1~ level of significance, 
indicating that the mean yield per pond for all the treatments differed 
significantly. 

To find out which of these treatments differ slgnlficW"Itly CD ~8S 
worked out. It was found to be 0.36 

Treatments 70,000 60,000 50,000 40,000 )0,000 20,000 
(stocking 
densit y /ha) 

Mean yield 6.78 6.6 6.23 5.78 4.65 3.)5 
(per pond) 

Ccn:lusiona 

Stocking den~ity 20,000/ha recorded the mInimum yield, whereas 70,000/ha 
recorded the maximum yield. There was no significant difference between 
the yields obtained at 60,000 and 70,OOO/ha densities. The yield from 
these stocking densities was significantly higher than that from aU 
other densities tested in the experiment. The yields obtair, d at 50,000/h8; 
40,OOO/ha; )O,OOO/ha; and 20,OOO/ha differed significantly from one 
another. 

12.4..3 Latin square desiCJl (LSD) 

Variation due to one factor of variability ("an be effectively controlled 
by adopting RBD. Often there is variation in respect of more than 
one, for example, pond size, depth, snape etc. The variation in respect 
of two facton can be controlled by using the 'Latin Square Design 
(LSD)'. In this design two restrictions are imposed by forming blocks 
in two directions, row-wise and column-wise. 

In this desiCJl, the number of treatments equals the number of replica­
tiona. If 'r' stand3 for the number of treatments .. weD .. for the 

number of replicatiON of each treatment, then the total nun-C>er of 
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e~rlmental units reqtllred for this design is r x r = r 2. These r 
2 

units 

are arranged in 'r' rows and 'r' colomns, each correspalding to different 

s~rces of variation. Then the 'r' treatments are assigned to these 
r experimental units in such a way that each treatment appears only 
once in each row and in each column. ., RBD there wes one restriction 
that each treatment must appear alce in each block, LSD diffPfs from 
RBD, in that, two restrictions are imposed namely each treatment must 

appear once in each row and each column. LSD is preferred to RBD 
when there are two sources of variability. 

12.4.3.1 Layout · of the desigl 

Treatments have to be assigned to experimental units in such a way 

that every treatment occurs only once in each row 
each column. This can be done in large number of 
in which it has to be dorie. has to be decided randomly. 

and once in 
ways. The w8¥ 

There are 2 poss;ble arrangements for 2 x 2 latin square of which 
one can be sp.lected randomly as a layout of the design. For 3 x 3 

latin square there are 12 possible arrangements of which one can be 
selected randomly as the layout for conducting the experiment. The 

number of possible arrangements increases with the increase in size 

of the latin square. For 5 x 5 latin square there are 161280 possible 
arrangements. Complete enumeration and selection for. such a large 

number of squares is tedious and hence in 'statistical tables for biological, 

agricultural and medical research', Fisher and Yates (1963) have given 
set of squares for 4 x 4; 5 x 5 and 6 x 6 from which all possibie 

arrangements could be obtained by permuting rows, columns and letters. 

from these set of squares first select a square at random. Then, in 
the case of 4 x 4 and 5 x 5 permute all rows except the first of the 

selected square, and all columns. Alternatively permute all rows except 
the first and assign the letters to the treatments at random. For 6 
x 6 squares permute all rows and columns at random and then aSSign 
the treatments randomly to the letters. Only 4 squares for 7 )( 7 and 

one square each for 8 x 8 to 12 )( 12 latin squares are available (risher 
& Yates, 1963). For squares of these sizes it is enough, if we take 
anly given square and permute rlni~ly all row," colornns and treatment&. 
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O"te of the possible arrangements of 5 x S latin squares Is given In 
Figure 3. 

Columns 

A E 0 C B 

0 B A E C 

Rows 
B A C D E 

C 0 E B A 

E C D A D 

Fig. 3 A Layout of latin square design 

12.4.3.2 Analysis 

For analysis of this design the following additive model is used 

X
ilk 

= m + a
i 

+ b
i 

+ c
k 

+ eiik 

A, B, 
C, D 
and E 

are 
treat­
ments 

wherer ~Il~ is the observation on ith treatment in ith row and kth 

column (I, " k = 1, 2 • • •• r) 

m is the general mean effect 

a, is the effect due to ith treatment 
b

l , 
, IS the effect due, to jth row 

c~ Is the effect due to kth column 
eill< Is experimental error which is a§umed to lJe independently and 
ndrmally distributed with mean zero and variance ct. 

The null hypothesis to be tested is that there Is no difference .mono 
treatment eftects. 



The analysis of data proceeds almost in a similar way as in the case 
of RBO. But here we will have Row sum of squares (ROSS) which 
is computed using the row totals, column sum of squares (COSS) using 
the column totals and treatment sum of squares (TRSS) using the treat­
menl totals. 

The following computations are required for testing the null hypothesis: 

I. Correction Factor (Cn = (Gf 
2 

r 

where G is the grand total of all the observations, r = Number 
of treatments = Number of replications. 

II. Total sum of squares (TSS) 

= Sum of squares of all observations - CF 

= HE x
2
ilk - CF 

III. ROSS = E~L - CF 

were Rj is the total of the jth row 

IV. COSS = LCk 
2 

- CF 

V. TRSS = 

were TI is the total of observations of the ith treatment. 

VL Error sum of squares (ESS) 

= TSS - (ROSS + COSS + TRSS) 

= II - (III + IV + V) 

These computations can be summarized in the form of ANOVA table 

as given below: 
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Table ANOVA table for LSD 

Source of eLf. SS MS 
Variation 

Rows r-1 ROSS 
ROSS 

M, = r-1 

Columns r-1 COSS 
COSS 

M2 : 
r-1 

TRSS 
M3, F (cal) Treatments r-1 TRSS : : M 

r-1 3 
E 

£rror (r-1) (r-2) [SS 
[55 

£ 
(r-1) (r-2) = 

Total 
2 

r -1 

For testing the hypothesis, F(cal) has to be compared with the table 
value of F with (r-1) and (r-1) (r-2) df at say ~ and 1~ lev el 0' 

significance. 

H F(cal) > F table, reject He 

~en Ho is rejected, treatment effects that differ significantly may 
. be found out. This is done by calculating CD using the formula, 

CD = . ~ 2 E ) t 

The value of t is obtained from t-tables at ~ level of aigriffeanee 

with error degress of freedom. 

The treatments for which means differ by this CD value or more will 
be considered as differing significantly. 
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The advantages are. 

i) With ' a two-way grouping, the latin ~uare design controls more 
variation than CRO and RBD, which results in a small error mean 

~uace. 

jj) Statistical analysis is simple 

The disadvantages are 

i) lAJe to its rigid nature, the number of replications should be 
Equal to the number of treatments, this design becomes impracti ­

cable for large number of treatments. The design is seldom used 
for more than 10 to 12 treatments. 

ii) For less than 5 treatments,. latin !quare design may not be as 

efficient as RBO or CRO as it does not provide sufficient number 

of degress of freedom for reliable estimation of experimental 

error. 

~le3 

Five test diets (A, B, C, 0 and E) were tested for the growth perfor ­

mance of a certain fish species for a period of 6 months adopting 

the latin ~uare design taking initial weight of fish as rows and initial 
age as columns. The net gain in weight (g) per fish is given below, 

Find out whether there is significant difference among yields obtained 

from test diets A, B, C, 0 and E. 



Initial 

weigh 

Total 

t 

Answer : 

D 
35 

C 
50 

E 
43 

8 
40 

A 
27 

195 

He : There is 

1. Ct : 

2- TSS : 

: 

: 

no 

193 

hitial age 

Total 

E C B A 

33 31 29 26 154 

D A E 8 
47 41 46 31 215 

A 8 D C 
30 25 37 35 170 

C E A D 
39 40 25 38 182 

8 D C E 
25 21 31 25 129 

174 158 168 155 850 

significant difference among treatment effects. 

G
2 

(850r 28900 = = 2 
r 25 

En xiJk2 - CF 

30398 - 28900 

1498 (I) 
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ROSS: 
2 

J: Rl" _ Cf 
_;o 

: 148606 - Cf 
5 

: 821.1 __ _ ( II) 

COSS : - Cf 

= 145514 - CF 
5 

: 202.8 .. H .... _ ( Ill) 

5. TRSS = Ti
2 

E_ - Cr 

Where T l' T t T 3' T 4 and T 5 are totais of A, 8, C, 0, and E treatments 

respectively. In the given example 

Hence, TRSS = 

= 145950 - Cf 
5 

= 
290 __ _ 

(IV) 
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6. [55 = Total 55 - (ROSS + COSS + TRSS) 

= (I) - (II + III + IV) 

= 1498 - (821.2 + 202.8 + 290) 

= 1498 - 1314 

= 184 

Analysis of variance table 

Source 

Rows 

(Initial weight) 
Columns 

(r,itial age) 
Treatments 

Error 

Total 

cU. 

4 

4 

4 

12 

24 

* - Significant at 5" .. 

** - Significant at 1~ 

S5 

821.20 

202.80 

290.00 

184.00 

F table = 
= 

3.26 at ~ level of sigrVficance 

5.41 at 1~ level of sigrVficance 

ConcIUlbll 

MS 

205. 30 

50. 70 

72. 50 

15.3 3 

13.39'" 

3. 31* 

4. 73· 

i) F value is sigrVficant at 1~ for rows Indicating that mean gain 
in weight varied depending upon the initial weight. 

if) F value is sigrVficant at ~ level of significance for treatments, 
indicating that mean gain in weight differs significantly for test 

diets A, B, ' c, 0 and £. 
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Designs discussed above are the 3 basic) experimental designs. For ad­

vanced designs such as confounded, split plot, composite, residual effect 

designs, etc., readers may refer to Cochran and Cox (1957) and Nigam 

& Guptfl_ (1979). 
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Chapter 1) 

TIME SERIES 

11.1 lnIxocb:tion 

Time series is a series of observations, constituting a statistical data, 

observed at different units of time, such as years, months, days etc. 
For instance, time series may represent the fish production 01 a country 
over the years, prices of fish over the months, growth of fish over 

the weeks etc. The basic assumption in the time series analysis is 

that those factors which .flave influenced the observations. 
in the past and present will continue to influence more or less in the 

same manner in future. Therefore, the objective of time series is 

to identify and isolate these factors for predictive purpose. 

11.2 Components of time series 

Cllservations of time series vary with time, due to the effect of certain 

factors. These factors are generally referred to as 'components of 

time series'. They are, 

i) Trend or secular trend 

ii) Seasonal fluctuations 
iii) Cyclic fluctuations 
iv) hegular fluctuations 

Every observation of the time series is assumed to be the joint effect 

of these four components. Mathematically, Y = T x 5 x C x I 

Where T, 5, C, and I indicate the effect of trend, seasonal fluctuations, 

cyclic fluctuations and irregular fluctuations, fespet:'tlvely. When the 
data are recorded anrtJally, then an observation Is expressed as 

Y=TxCxl 
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13.2.1 Trend 

11.2.2 

Y 

t.1ost of the time series exhibit a general tendency to increase or 

decrease over a long period of time. This basic tendency is called 
the 'trend' or secular trend of a time series (Fig.1). Thus trend is the 

Y 

Year 
Fig. 1. Secular trend 

Seasonal . fluctuatiOfll 

overall change taking place in 
time series over a long period 
of time. It reflects the effect 
of forces that constitute gradual 
growth or decline without 

sudden reversal of directions. 
Some examples of secular trend 
are, steady increase of population 

over a period of time, steady 
increase of Inland fish production 
over the last few years. 

Seasonal fluctuations refer to regular and periodic variations that occur 

in a time series over a short period. These fluctuations repeat at 

regular intervals of time, say every day, every month etc. Generally 
the periodicity of seasonal 
fluctuations Is less than one 

year. Weather conditions, cus-

toms, tradi tions and habits 
of people etc., cause seasonal 

fluctuations. Some examples of 
seasonal fluctuations are 

i) Ph y t oplankton product ion 
will be more . during day 
time. 

'----------...... ------ Ii) Landings of some 
Month fishes are more 

marine 
during 

Fig. 2. Seasonal fluduations h.nar phases. 
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1:1.2.3 Cyclic flucwations 

Most of time series on economic activities are influenced by the period 

of prosperity and depression. In times of prosperity. production, sales. 

employment etc., are hi~ and in the times of depression, the opposite 

is true. Thus the periods of prosperity and depression cause upward 

Year 
Fig. 3. Cyclical flUCtuations 

and downward movements in time 

series. These movements or fluctua­

tions are called 'cyclic fluctuations '. 

These fluctuations differ from 

seasonal 

are of 

year and 

fluctuations in that they 

longer dur ation than a 

they do not generally 

exhibit regularity in their occurence. 

1 ),2.4 Irregular fluctuatlaas or lWldom fluctuatioos 

Fluctuations caused by chance events such as wars, floods, strikes 

etc., are called irregu lar fluctuations. These fluctuations are un­

predictable and their effect lasts generally for a short period. For 

example strike by fishermen will push down fish productiOn, 8 fire 

in a departmental store will influence ssles, 

1),) Analysis of time series 

The process of separating out the different components of the time 

series and studying them individually is known as snalyals of time .eries. 
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1111 &timation of b'end 

The following are three important methods of measuring the trend 

I) Free hand method or graphic method 

ii) Method of moving averages 

iii) Method of least squares 

13.3.1.1 Free hand method or graphic method 

This is the most simple method of estimating the trend values. In 
this method first. the original observations of the time series are plotted 
on a graph paper. Then a smooth curve passing through many of 

these points is drawn. This curve 

Y describes the trend. This method 

Year 
Fig. I.. Eye fitted trend 

13.1. 1.2 MethOd of moving 8\'erages 

is quite easy to understand and 
does not involve any mathematical 

complications and saves time. The 

main drawback of this method is, 
it does not lead to unique results 

as different persons may draw 
different trend lines for the same 

set of data. 

The method of moving averages is a simple but effective method of 

measuring the secular trend in a time series. It consists of calculating 

the limple arithmetic mean by taking specified rurrber of observations 

at a time 118)' 3, 4, 5 etc., and writing It in the centre of these 

observatJons. Then repeat the process by adding the next observation 

and dropping the irltial observation till all the observations of the 

series are elChausted. The rurrber of observations taken at 8 time 
is called the 'period of moving average'. These averages are called 
moving averaglll _ the process of taking the averages goes on moving 

from blK}inrlng 0' the table to the end. 
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An advantage of this method is that it reduces the variations. 

The crawback of this method is that it does not give the values for 

a few observations at the beginning of the series and for a f w obser­
vations at the end of the series. 

Example 1 

Find the trend values for the following data on tolal fish production 
in the country by i) 3 yearly and ii) 5 yearly moving averages. Plot 
the given data and the trend values. 

Ye,. ' 

Production 
(lakh tons) 

Answer 

Year 

1974 
1975 
1976 
1977 
1978 
1979 
1980 

1974 1975 1976 1977 1978 1979 1960 

22.56, 22.66, 21.74. 23.12, 23.06, 23.40, 24.42 

fish 3 yearly 
Production moving 
(Iakh tons) average 

22.56 
22.66 22.32· 
21.74 22.S1 
23.12 22.64 
23.06 23.19 
23.40 23.63 
24.42 

*22.32 = 22.56 ... 22.66 ... 21.74 
3 

.5 yearly 

moving 
average 

22.63" 
22.80 
23.15 

**22.63 = 22.56 ... 22.66 ... 21.74 ... 23.12 ... 23.06 
.5 



25 

24 

23 

22 

21 

71. 75 76 

202 

n 78 
Years 

Obserwd data 
x-- - it 3 Years moving 
• • gwrage 

5 Years moving 
ave~age 

80 

Fig. S. Trend by moving average method 

1 J.J. 1.3 Method of least squ.es 

The method of least !quares described in chapter 10 can be used to 

fit appropriate trend line for the given time series data. Appropriate 
trend may be linear (straic;flt line) or exponential or quadratic 

(parabolic) depending upon the variable under study. The method 
is objective and highly efficient. Trend line worked out by this method 

can be used for predicting immediate future trend. 

i) Unear trend 

Linear trend is estimated by the equation, 

Y = a + bt •••••••••• (I) 

Where Y is the variable under study and t is the time period. 

The parameters of the equation 'a' and 'b' are estimated by 
the method of least squares discussed In Chapter 10. Computations 

can be made easier by choosing t such thattt = o. In such 
cases '.' and 'b' are estimated using the following formulae : 
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1: Y 
a = n 

b = 1: Yt 

~2 

fit 8 linear trend to the data given in example 1, graph the original 
and trend values, estimate the production for 1981. 

Answer 

n the given example n = 7, therefore middle most year is taken a, 
zero and other values are written as shown in the table. 

V.,. F'Wl production . t t'i 
(Iakh tofWleS) 

CV), 

1974 22.56 -3 67.68 9 

1975 22.66 -2 45.32 4 
1976 21.74 -1 21.74 1 
1977 23.12 0 a a 
1978 23.06 1 23.06 
1979 23.40 2 46.80 4 
1980 24.42 3 73.26 9 

160.96 0 8.38 28 

1: Y 
a = = n 

160.96 = 22. 
7 

E tY 
b = 

tt2 = 8.38 = 0.299 

28 

Hance, Y = 22.99 + 0.299 t • • • • • • • • •• (0) 



Trend values for different years are estimated using equation (II). To 
get trend value for 1974, put t ; -3 in equation (II), which gives Y = 
Z2.093. To get trend value for 1975, put t = -2 inequation (lI)and so on. 
Trend values for different years are given below: 

Ve. (])served Trend value 
(Estimated) 

1974 22.56 22.093 
1975 22.66 22.392 
1976 21.74 22.691 
1977 23.12 22.990 
1978 23.06 23.289 
1979· 23.40 23.588 
1980 24.42 23.887 

Estimated production for 1981 is obtained by putting t ; 4 in equation 
( II). 

i.e., Y = 22.99 + 0.299. (1+ ~ 
= 24.186 
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2S 

,21. 

23 

22 

21 Ob5erved data 

71. 7S 76 77 78 79 80 
Years 

Fig. 6. linear trend 

Exan.,le 3 

Export of marine products in thousand tons are given below. Fit 
linear trend line and estimate the exports for 1981. 

. 
Year 1975 1976 1977 1978 1979 1980 

Q.eantity 54.56 66. 75 65.97 86.89 86.40 75.~8 

Exported 
('(0) t) 

In this example, nurrber of observations, n = 6, therefore two middle 
most years are taken as t = -1 and t = 1 and remaining values of 

t are as shown in the table, so as to make r t = a. 



Year 

1975 
1976 
1977 
1978 
1979 
1980 

Qjantity 

(Exported) 
('000:)- (Y) 

54.46 
66. 75 
65.97 
86.89 
86.40 
75.58 

436.05 

a :: 

b :: 

206 

t 

- 5 
- 3 
-1 

1 

J 
5 

0 

L Y :: 

n 

L. t Y = 
L t 2 

tY t
2 

-272.3 25 
- 200.25 9 
- 65.97 1 

86.89 1 
259.20 9 
377.90 25 

185.47 70 

436.05 :: 72.675 
6 

185.47 :: 2.65 
70 

Hence, the trend line is Y :: 72.67. 5 + 2.65 t. Estimated exports for 

the year 1981 are 

Y :: 72.675 ... 2.65 (7) :: 91.225 

ii) Exponential trend 

The linear trend ' is suitable when the variable under study is changing 

on an average by !:Gual absolute amounts in each time period. However, 

if the absolute amount of a v'ariable increases morE' rapidly in the 

later time periods than the earlier one, e)(ponential trend will be approp­

riate instead of linear trend. 

Exponential trend is estimated by the 

Y 
t 

:: ab ••••••••• (III) 
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Where Y is the variable under study and t is the time point, • .nd 
b are constants. Equation (III) is not in the linear form. However, 
it can be brought to the linear form by logarithamic transformation 
assuming multiplicative error model (see 1 [). 4. 9. 1 ). 

Taking logarithm on both sides of (III) gives, , 
log Y = log a + (log b)t i.e., Y ' = A + Bt ••••••• (IV) 

I 
Where Y = log Y, A = log a, B = log b. 

As equation (IV) is in linear form, A and B are estimated as in the 

case of linear trend (!!:luation I), choosing such that E t : Cl 

1: Y A = log a : __ -'-_ = log y 

n n 

I 
1: Y t = t (log Y)t B = log b = 

E 2 
E t

2 
t 

EluwnpIe 4 

nt an exponential trend line for the data gillen in example 1. Estimate 
the production for the year 1981. 

Arawec 

.. 
y't 2 

Yetll FlIh pl'od Y = log Y t 

1974 22.56 1.3534 -3 -4.0602 9 
1975 Z2.66 1.3553 -2 -2. 7106 4 

1976 21.74 1.3373 -1 -1.3373 1 
1977 23.12 1.3640 0 0 0 
1978 23.06 1.3628 1 1.3628 
1979 23.40 1.3692 2 2.7384 4 
1980 24.42 1.3878 J 4.'1634 9 

9.5298 0 [)'1565 28 



A 
'I 

= 1: Y 
n 

I 
B = E Y t 

1: t
2 

= 

= 

9.5298 = 
7 

0.1565 = 
28 

1.3614 

0.0056 

Thus the fitted trend line can be expressed as, 

log Y = 1.3614 +, o.0056t 

To estimate the production for 1981, put t = 4 

log Y = 1.3614 + .0056xy 

log Y = 1.3838 

Y = 24.1991 

iii) Qladratic trend 

Straight line may provide trend of a time series reasonably well, for 

short periods of time. However, for longer periods a curve of some 

sort may be suitable to describe the trend. A 'GUadratic model', or 

'second degree polynomial' or 'parabolic curve' is the simplest of curvi­

linear models. It is discussed here to estimate the quadratic trend, 

which is given by, 

Y = a + bt 
2 

+ ct ••••• (V) 

Where Y is the variable under study and t is the time period. The 

parameters a, b and c of the equation (V) are estimated using the 

method cif least squares. This is achieved by solving the following 

3 normal equations 

r Y = na+b tt+c Et
2 

a I: t + b t t
2 

+ c tt 3 
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If t is chosen such that 

reduce to 
E t = 0, then the above normal equations 

E V 
2 

= na + c E t (VI) 

E tV = bE t
2 

(VII) 

E t
2y aE t 2 4 

: + c,E t ( VIII) 

The par ameter 'b' is estimated from equation VII as, 

b = J...L'L 
E t 2 

The parameters 'a' and 'e' are estimated by solving th eq uations (VI) 
and (VIII). 

Fitting of quadratic trend is explained with the help of data given 

in example .1. 

Year tY 
2 

t
2
V to\ Y t 

1974 22.56 -3 67.68 9 203.04 131 
1975 22.66 -2 45.32 4 90.64 16 

1976 21.74 -1 21.74 1 21.74 1 

1977 23.12 0 0 0 0 0 
1978 23.06 1 23.06 1 23.06 1 

1979 23.40 2 46..80 4 93.60 16 

1980 24.42 3 73.26 9 219.78 81 

160.96 0 8.38 28 651.86 196 

b 
E tV 

: 
E t 2 
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Parameters a and c are estimated by solving the equations. 

tV cE t 
2 

: na + 

r tZy t t Z E t '+ 
: 13 + c 
i.e., solve 
160.96 = 7a + 28c (IX) 

651.86 = 28a + 196c (X) 

Multiply (IX) by 4 and substract (X) from It. 

i.e, 643.84 = 2& + 112c 

-651.86 : -2& - 196c 

i.e., - 8.02 : -84c 

Hence, c : 0.0955 

Substituting the value of c in (IX), the value of a is estimated as 

a = 22.6124 

Hence, the estimated quadratic trend is 

Y = 22.6124 + 0.2993t + o.0955t 
2 

.... 
25 

21. 

23 

22 

21 

71. 7S 7& 77 78 79 '!O 
Fig. 1. QuadratiC trend 
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Chalttar ." 

INDEX NUMBERS 

14.1 t1trocb:tion 

An index 

~ar:!ge in 
situations, 

rurroer is a statistical device which measures the relatil/e 
the values of groups (set) of re~ ~!riabl~t two different 
time ot piace. The object of these index rurroers is to 

~measure the changes that have occured in ptices, production, cost 
of living etc. Business -men and economists are able to describe and 

analyse business and economic situations quantitatively with the help 
of these indices. That is why index rurrbers are some times called 
'Economic indicators or barometers '. ilst as barometers m asure 
atmospheric pressure, index nurrbers measure changes occurlng In eco-

• nOmic field. A1thoulj1 index rurrbers are mainly used in business and 
. economics, they can also be used in other fields. 

14.2 Types "f index """"'en 

Index rurroers can be broadly classified into 'categories namely, 

1. Price index rumers to compare the changes In prices 

2. ~8ntlty index rumers to compare the changes In quantity 

,. Value index rurroers to compare the changes in value. 

14.3 Bale paiod and anent period 

rndex rurroer helps to compare the changes In the values of variables 
at 2 different periods. tor comparison, one of the periods must be 
a standard one. The period which Is considered as standard is known 
as 'base period', the other one a 'current period' (given period). Usually 
the price of a commodity in the base period Is denoted by p and 

o 
quantity by q. In the case of current period, price of a commodity 
is denoted by 0p , and quantity by q. Price index rurroer. are generally 

n . n b n... denoted by Pon and quantity Index rurrbers y .... n. 
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Price relative Is defined as the ratio of the price of a single commodity 
In the cur.rent period to Its price In the base period. 

Price relative = Price of Il commod ty in current period 
Price of a commodity in base period 

p 
n 

= p 
o 

usually expressed In ~ 

Note that the price relative for a given period relative to the same 
period Is always 10~ i.e., the price relative corresponding to base 
period Is always 100. In statistical language 1970 = 100 indicates 
that the year 1970 Is taken as the base period. 

The prlc., of rohu fish during 1976 and 1980 was Rs.9 and Rs.12 per kg. 
respectively. Compute . price relative taking 1976 as the base year. 

Price relative = 
Price In current year 
Price in base year = 12 = 1.33 

9 

The result indicates that the price of ronu In 1980 was 13". of that 
In 1976 I.e., It Increased by 3".. 

Instead of comparing the price of a commodity If we are Interested 
In comparing quantities; we use quantity relative 

QJawltlty relative = $a. _ 
qo 

end Is ..-Jally expressed In I. 
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~e2 

Export of marine products in our country during the year 197~ and 
1980 was 54,463 and 75,583 tonnes respectl·vely. Ct ' ompu e quantity 
relative taking 7975 as base year. 

Guantity relative 
Quantity exported in the current year ( 1980) = Quantity exported in base year (197S) 

75.583 
= 54.463 = 7.3~ : 739 

The result indicates that the export of marine products in 1980 ha5 

increased by 3~, as compared to 1975. 

14.6 Necessity of single index runner 

Usually the comparisons of prices/quantities of large groups of commo­

dities will be of interest rather than of a single commodity. For example. 

in computing cost of living indpx it will be of interesl not only to 

compare prices of mill< in one period with another, but also to compare 

prices of fish, eggs, bread, etc., so as to obtain some general pl~ure. 

Of course, price relatives of all these commodities can merely be listed. 

This would not be satisfactory, what is required Is a single price index 

runner which would compare over all price change in two penods. 

Averages such as arithmetic mean and geometric mean are generally 

used to summarize a large amount of information and to arrive at 

a single index rumber. Depending upon the type Of average used 

there are different methods for computing index rumbeu. 

The computational procedures of price or quantity or value index rurrbers 

are almost similar. The compulation of price index rurrbl!tS is described 

here. 
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'4.7 QMwtruction of price Index runiMn 

There are unweighted and weighted price index nurrt>f'rs. 
of constructing these are described below. 

'''7.1 Unweighted price Index 1"LIfI'Oer5 

MethoJ 

This is the simplest method of constructing index nurrt>ers. This method 
consists of working out the ratio of sum of prices of commodities 
of current year to that of sum of prices of commodities of base year. 
Usually this ratio is expressed in percentage. 

If P n 1, P n2 • • • • • • • • • P rk denote the p~ces of 1st, 2nd • r:1 • 
• • • • • • kth commodity in the current year and 01, P 02 • • • • •• ole 

denote the respective prices in the base year, then simple aggregative 
index nurrt>er is given by 

Pon = 
P ~ P

n2 
~ . ~ P 

n1 nk 

Pot ~ P
oZ 

+ • • + Pole 

I: Pn 
100 

I: Po 
)( = 

Although this method has the advantage of being easy to apply, it 

has 2 disadvantages which make it unsatisfactory 

(I) It does not take into account the relative importance of different 

commodities. Thus according to this method, (qual importance 
is given to salt and sugar and fish 

(ii) The particular unit of measurement used ill price quotations 

such 85 k.lograms, quintals etc., affect the value of the Index 
nulTber. 



1"7.1.2 Si~e average of relatives method 

In this method, fir st the price relatives are computed by dividing the 

price of the commodity in current year by price of the commodity in 

the base year. Then these price relatives are averaged to gC't sinql 

index number by using averages like arithmetic mean and geom tric 

mean. 

P P P . 
Let n1, n2........ Ii< denote the ~rlcep of 1st, 2nd •• p . 
• • • • • kth commodity in current year and 01, 02..... ok 

their respective prices in base year. 

Price relative for 1st commodity is 

Price relative for 2nd commodity is 

p 
nl 

p 
01 

and so on. 

Thus price index number using arithmetic mean as average is 

Pon : 1 

k 

p P 

+~)x nl n2 , 
+ -- +---_ . 

P P02 Pol< 
01 

P 

( E_n ) x 100 
P = 

k 0 

The price index rumber using geometric mean as average is 

Pon = 

log PDn = 
k 

( Pn1 II( Pn2 x ••• • • x ~ )11/< 
Pol · Po2 Pole 

( log + log +-
P,* ) 

+ 109 p­
ole 

100 



= 
k 
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P 
(E log P n ) 

o 

P 
Hence, Pan = Anti log 

(
1 I:log _I!_ ) -_. P 
k a 

It is usually expressed in percentage. The disadvantage of this method 

is that it does not take into account the relative importance of various 

commodities. 

14. 7.2 Weic;flted index rumbers 

14. 7.2.1 Wcic;flted aggregative method 

To overcome the disadvantages of the simple aggregative method, 

prices of each commodity are assigned weightage by a ' suitable factor 

often taken as the quantity of commodity sold during the base year 

or of current year. Weightage indicates the importance of the particular 

commodit y. The formulae that arise when the base year or current 

year quantities are used as weights, are discussed below. 

i) Laspeyre's index rumber 

In this index r.u mber base year quantities are used as weights. 

If q 0 stands for the quantity of commodity sold during the base 

year, then Laspeyre's index rumber is given by 

Pan (Lasp) = 

it) Paasche's Index rumber 

Pq 
i: __!!_2 
.... P q 
Lo a 0 

x 100 

In this index rumber current year quantities are used as weights. 

If q stands for quantity of commodity sold during current year, 

the rpaasche's index rumber is given by 



Pan (Paas) = 

iii ) FilJher" Index rufl"ber 
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Pq 
n n pq--

ron 

x 100 

It is the qeometrlc mean of Laspeyre's and Paasche'5 index rumber. 
Fisher's index number is gillen by 

Pon (F) = -J Pan (Lasp) Pon (Paas) 

= 
rPq [Pq 

___ .:..:.n...::o~ n n 

"Pq "Pq 
,,00 t. on 

ill) Marshall - Edge worth Index rufl"ber 

In this index rumber weights are taken as arithmetic mean of 

base year and current year quantities i.e., 

Weights will be 

Marshall-Edge warth price index number is gillen by 

Pon (M-E) = 

P qo + qn 
L n ) 

2 
l( 100 

r Po ( 
qo + qn 

2 
) 

L P 
~ qo + qn) n 

1: P{.. qo + on ) 
= x 100 
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'4.7.2.2 Weig,ted average of relatives method 

To overcome the disadvantages of simple average of relatives method 
weighted average of relatives method is used. Each price relative is 
assi(_J1ed weight by the total value of the commodity in terms of some 
monetary unit such as Rupee. Since the value of the commodity is 
obtained by multiplying the price p of the commodity by quantity q, 
the weights are given by pq. 

We have 2 formulae depending on whether base year 'values (Po qo) 

or current year values (p n q n) . are used as welg,ts 

1. When base year values are used as weights, 

Pn r- Po qo 

Pon 
Po r pnqo 

100 = = x 
r Po qo r poqo 

'M1ich Is equivalent to Laspeyte's index rull'ber 

2. ""'en current year values are used as weights 

r 
Pn 

(Pn' qn) -
Pon = 

Po 
x 100 

r Pn qn 

= 
r PW 

x 100, r W 

14.8 QJanUty Index rurrben 

rotrnJla for quantity Index runtu~u can be obtained by Interchanging 

P by q and q by P in the formula of price ince,. rumbers discussed earlier. 
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14.8.1 Sin1Jle quantity index rurrben 

I) Sln1JIe aggregatlve method 

Qon = x 100 

ii) Simple average of relatives 

Qon = k x 100 

14.8.2 Wei!,"hted quantity Index rurrbers 

i) laspeyre" quantity Indeze rurrOer 

Qon (Lasp) = x 100 

ii) Paasche's quantity Index rurrber 

x 100 

iii) F1Iher's ~ity index oomber 

Qon en = (Laspeyre's quantity index nu;rber) (Paasche 's 

quantity Index number) 

ill) Manhall - Edge worth quantity Index l"IJni)er 

x 100 
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ExflR1>le 3 

Calculate price index nurrber using Laspeyre's, Paasche's, Marshall Edge 
worth and Fisher's index nurrber formulae for the following data on 
selected items of marine products exported during 1979 taking 1975 
as the base year. 

Item Price QJantity exported 
(Rs. 000) (000 t) 

1975 1979 1975 1979 

1. Frozen shrimp 23.8 41.4 46.5 51 .1 

2. Frozen froglegs 24.0 21.7 2.0 2.9 

3. Frozen cuttle 28.9 27.6 1.2 1.5 

4. Fish & fillets 12.0 5.9 0.3 22.6 

Fresh & frozen 

fish 

5 Dried fish 4.1 4.7 2.4 3.4 

IVtswer 

Let Po & Pn denote price in base and current year respectively and 
qo & qn denote the quantities in base and current year respectively. 

The following computations have to be made: 
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Item Po Pn qo qn Po qo Po qn Pn qo Pn Pn 

1. Frozen 23.8 41.4 46.5 51.1 1106.7 1216.2 1925.1 21 15.5 
shrimp 

2. Frozen 24.0 21.7 2.0 2.9 48.0 69.6 4.s.4 62.9 

froglegs 

3. Frozen 28.9 27.6 1.2 1. 5 34.7 43.4 33. 1 41.4 

cuttle 

4. Fresh & 12.0 5.9 0.3 22.6 3.6 271 .2 1.8 1}3.5 

Frozen fish 

S. Dried fish 4.1 4.7 2.4 3.4 9.8 1J.9 11.3 16.0 

TOT A L 1202.8 1614.3 2014.7 2369.1 

i) Laspeyre's index ,."rrber 

E Pnqo 
: )( 100 

E Poqo 

2014. 7 
100 : 

1202.8 
)( 

: 1.68 x 100 

= 16~ 

ii) PaaKhe's Index nJrrber 

EPnqn 
100 = x 

E Poqn 
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2369.1 
:: x 100 

1614.3 

:: 1.47 x 100 

:: 14~ 

iii) Marshall - Edge WOlth Index I"IJnner 

E Pn (10 + qn) 
:: x 100 

E Po (10 + qn) 

E pnqo +EPnqn 
:: X 100 

E Poqo +EPoqn 

2.014. 7 + 1.369.1 
100 :: 

1202.8 
x 

+ 1614.3 

4J83.8 
100 :: 

2817.1 
x 

:: 1.56 x 100 

:: 156!0 

. iv) fisher's index I"IJnOer 

:: (Laspeyre's) (Paasche'S) index number 

:: (1.68) ('L47) 

:: 2.4696 

:: 1.57 

:: 
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The value index rA.urbe: using simple aggrl!98t1ve method is given by 

Von = 
t Pnqn 

\\flere 

x 100 

= total value of all COmmodities In the base 
period. 

= total value of all commodities In the given 
period (current) 

Weighted aggregative value index fVmi>ers can be constructed using 

appropriate weigl'lts to indicate the relative importance of the commodities 

on the lines similar to the construction of weighted aggregatlve price 
and quantity index r.Jmbers. 

14.10 Tests fOl corllistenr::y of an index raJlTber 

According to Prof. Fisher,a good index fVmber is the one which satlsfles 

the following two tests I) Time reversal test and iI) Factor rever:sal 

test. 

14.10.1 TIme revel'sal test 

According to this test any index number formula to be accurate should 

be time consistant i.e., the same picture of change in the price level 

should be obtained if the base period and current period are inter­

changed. Consider a particular commodity, say, fish. if the price of 
fish is doubled from 1970 (Rs.4) to 1983 (Rs. 8), then prico relative 

for year 1983 taking 1970 as base year will be 2.00. Similarly price 

relative for year 1970 taking 1983 as base year will be 1n : 0.50. 
Thus, cree is the reciprocal of the other and the product of 2 (0.5) : 1. 
This is obviously for each individual commodity and according to thi 

test, it should be true for .... dex number. n symbols this test says Pon. 
Pho = 1 I.e., the product of index number obtained by Interchaoging 

the base year and the current year (subscript a & n) with the OI'igiNII 

index number should be one. 
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This test is satisfied by simple aggregative index number, index number 

based on geometric mean, Marshall - Edge worth index number and 
Fisher's inde x number 

14. 10.2 factor reversal test 

The index number obtained by inter changing the factors p's (prices) 

and q's (quantities) occuring in a price index number formula, when 

multiplied by original price index number should give value index number 

i.e., the product of price index number a"d quantity index number should 
be Ell ual to value index number. 

i.e., Pan Glon : Von 

Fisher's indel( number is the only index number which satisfies this 
test. 

As Fisher's inde x number satisfies both the time and factor . reversal 

tests it is called the ideal index number. 

14. 11 Cost of living index nulrber (co nsumer price index nulrber) 

The (whole sale) general pri ce index numbers measure variations only 

in the general level of prices. These variations do not throw light 

on the effects of rise and fall of prices on the cost (standard) of living 

of different classes of people. Therefore, to overcome this inability 

of general price index numbers, special type of index numbers known 

as 'cost of living index numbers' are computed. 

Cost of living index number studies the effect of changes in prices 

of commodities on the people (consumers). This index number is designed 

to measure the incr ease in the cost of expenses of maintaining the 

same standard of living as that of base year. Since different groups 

of people consume different types of commodity and that also in different 

proportion, it becomes necessary to compute separate index number 

for different groups of people and for different areas. Cost of living 

index number is therefore always associated with a well defined class 

or group of people. 



Cost of living index r'.unber is some times referred to as 'consumer 
retail price index rurrber '. This index number is of soeciaJ interest 
85 it is generally used for fixation of salaries and wages of employees 

and industrial workers. 

II.1ost commonly used formula for computation of cost of li\li~ index 
nurrber is Laspeyre's formula which is given by 

)( 100 

Construction of index nurrber by this method nece5swtes collection 
of information on the quantities (quantities consumed 'per average family) 
of items. But in practice it is difficult to find such average quantities 
of consumption in all cases. To overcome this dilficulty, the followi~ 

formula is used 

: 

Where P : 
P 

n 
p 

o 

E PW 
E W 

x 100 

W represents weights 

x 100 

: 

Compute the cost of living index nurrber for the following data I 
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Answer 

Group index 

P = 
Pn 

Po 

food 200 

Clothes 150 

R~nt 100 

fuel 125 

Miscellaneous 174 

Amwer 

Cost of living index nurriler 

= r PW 
r W 

: 16750 
100 

: 167.5 

x 100 

48 

22 

12 

10 

8 

100 

14.12 Ba5lc r&:luirements in the construction of index rumben 

I) The IUpose and ICOpe of index rumberl 

PW 

9600 

3300 

1200 

1250 

1400 

16750 

Define clearly the purpose of Idex numbers, as most of the later 
problems like commodities to be included, selection of the base 
period etc., will depend upon the . purpose. for instance, if an 
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index nurrber is being construc ted on the cost of living 01 fishermen, 

then food and other items should include such consumer qoods 
which are important to this class. 

The scope of index nurrbers rel ers to area to be covered and 
t.ime taken in to consideration. 

ii) Selection of the commodities to be included 

It is practically not possible to include all commodi t ies which 

are available in the markel, as it involves more time. money and 

labour. Therefore, it is necessar y to select some important commo ­

dities from the available ones. The selec tion of cc.mmodilies 

should be done with great car e so that the index number con­

structed reflects the purpose 01 i ts use. It is also necessary that 

the commodities included should be easi ly recognisab le. 

iii) Sources of Cflllecting required data on price and quanti ty 

Reliability of an index nurrb er depends on the accuracy of data 

used in its construc tion. As pr ice of an item varies Irom place 

to place and even Irom shop to shop, it is necessary to selpcl 

representative places and persons from whom the data have to 

be obtained. Usuall y the places where the particular commodity 

is purchased or sold in large quanti ties are chosen. These can 

also be obtained from reports published by the Government depart­
ments or from standard trade journals. The Government Department s, 

Central Statistical Organisation are the major sources 01 reliab le 

data, besides the Indian Merchants O'larrbers or O'larrber of Trade 

and Commerce. 

Iv) (]Dee of base period 

The period which is selected as th·e base year should be economically 

stable. The period chosen should be free from wars, floods, famines 

etc. It should not be faraway from the current year . If base 

period is far away from the current year, there is a possibility 

that the commodity which was very popular dur ing the base year 
might have become out of taste in the current year. The base 

period chosen may be a single year or it may be an average 

of two or three yeara. 
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v) Oloice of appropriate wei~ts 

The purpose for which the Index I'IJrrOer is being constructed 

is an important consideration in choice of weights. The- weights 

assigned should reflect the relative importance of different items, 

that are included in the construction of index I'IJrrOers. Usually 

the weights choser, for price index nurrbers are quantities of 

base year /current year. Some times the value weights are also 
used. ;-

14. 13 Uses of Index I'IJrrb ~s 

1. nde x numbers are useful in comparing changes in production, 

price, imports, exports etc., to study general economic conditions 

and to plan Clcti vities such as production of goods, stock of goods 

etc. 

2. ndex numbers are useful to Government in framing economic 

polic ies on taxation, imports and exports, grant of licences to 

new firms, banks etc. 

3. Cost of li v ing inde x numbers are useful in fixation of salary wages 

and grant of allowances to employees and industrial workers. 

4. nde l< numbers are used as price deflators to measure the real 

changes in economic magnitudes keeping prices constant. 
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