

Date: 27 October, 2020

Post Graduate (PG); Monsoon semester, 2020

VMC 607: VACCINOLOGY

Topic: Traditional vaccine

Dr Manoj Kumar Assistant Professor Department of Veterinary Microbiology Bihar Animal Sciences University, Patna

TYPES OF TRADITIONAL VACCINES

Inactivated vaccine preparation

Live vaccine preparation

Toxoid vaccines

INACTIVATED VACCINE PREPARATION

- An inactivated vaccine uses a dead or killed virus or bacteria to help your body develop an immune response.
- An inactivated vaccine cannot cause the particular disease that it is intended to prevent.
- Some inactivated vaccines require multiple doses and periodic boosters for protection to continue. Live vaccines require only one dose.

How an Inactivated Vaccines Created?

- The common means to make a pathogen safe for use in a vaccine is by treatment with heat or chemicals or gamma irradiation
 - This kills the pathogen but still allows it to induce an immune response to at least some of the antigens contained within the organism.
- Heat inactivation is often unsatisfactory due to extensive denaturation of proteins.
- Chemical inactivation with formaldehyde or various alkylating agents are used for inactivation.

Disadvantages:

- Even after pathogens are killed >>> inactivated whole-organism vaccines still carry certain risks.
- Large quantities of the infectious agent needs to be handled prior to inactivation.
- Less immunogenic and tend not to have an extended duration of immunity (memory) compared to attenuated vaccines.
- Often contain an adjuvant purposely to incite local inflammation & enhance the immune response to the antigen.

LIVE ATTENUATED VACCINE

- Contain live organisms
- Live, Attenuated vaccine The microbe, weakened in the laboratory to fight the infection without causing any serious harm but very closely reproduces the natural stimulus to the immune system.
- Attenuation involves deletion of essential virulence factors or mutation of genes encoding metabolic enzymes whose function is essential for survival outside the laboratory.
- Attenuated viruses produce milder infections than the pathogenicity produced by the virulent wild-type counterparts.

Disadvantages:

- Integration of the plasmid harbored by bacterial vaccine vehicles is a potential hazard.
- The route of administration of the vaccine important. Can cause disease if given by the wrong route.
 - For e.g. live bacterial vaccines is fit for mucosal administration; simultaneously ingestion of foreign DNA does occur.
- Peptides can be absorbed through the mucosa and some may induce an allergic reaction.
- Vaccination using live bacterial vaccines or exposure to the natural infections can lead to the formation of auto reactive antibodies

TOXOID VACCINE

- Toxoid vaccines
 - selected toxins (proteins)
 - sufficiently attenuated (rendered harmless)
 - · able to induce a humoral (antibody) immune response.
- Toxoid proteins are biologically inactivated forms of toxins.
- The most often used toxoid is tetanus toxoid, but other proteins are also used.
- Toxoids can be used to couple haptens through any of the chemical reactions.
- Generate strong immunological responses in vivo.

Disadvantages:

- Toxoid vaccines have
 - short duration of immunity comparable to attenuated viral vaccines
 - multiple sequential initial doses may be required to protect
- Revaccination (booster) may be required multiple times in a single year depending on individual risk factors.

Thanks